248 research outputs found

    Spatialized teleconferencing: recording and \u27Squeezed\u27 rendering of multiple distributed sites

    Get PDF
    Teleconferencing systems are becoming increasing realistic and pleasant for users to interact with geographically distant meeting participants. Video screens display a complete view of the remote participants, using technology such as wraparound or multiple video screens. However, the corresponding audio does not offer the same sophistication: often only a mono or stereo track is presented. This paper proposes a teleconferencing audio recording and playback paradigm that captures the spatial location of the geographically distributed participants for rendering of the remote soundfields at the users\u27 end. Utilizing standard 5.1 surround sound playback, this paper proposes a surround rendering approach that `squeezes\u27 the multiple recorded soundfields from remote teleconferencing sites to assist the user to disambiguate multiple speakers from different participating sites

    Spatial Acoustic Vector Based Sound Field Reproduction

    Get PDF
    Spatial sound field reproduction aims to recreate an immersive sound field over a spatial region. The existing sound pressure based approaches to spatial sound field reproduction focus on the accurate approximation of original sound pressure over space, which ignores the perceptual accuracy of the reproduced sound field. The acoustic vectors of particle velocity and sound intensity appear to be closely linked with human perception of sound localization in literature. Therefore, in this thesis, we explore the spatial distributions of the acoustic vectors, and seek to develop algorithms to perceptually reproduce the original sound field over a continuous spatial region based on the vectors. A theory of spatial acoustic vectors is first developed, where the spatial distributions of particle velocity and sound intensity are derived from sound pressure. To extract the desired sound pressure from a mixed sound field environment, a 3D sound field separation technique is also formulated. Based on this theory, a series of reproduction techniques are proposed to improve the perceptual performance. The outcomes resulting from this theory are: (i) derivation of a particle velocity assisted 3D sound field reproduction technique which allows for non-uniform loudspeaker geometry with a limited number of loudspeakers, (ii) design of particle velocity based mixed-source sound field translation technique for binaural reproduction that can provide sound field translation with good perceptual experience over a large space, (iii) derivation of an intensity matching technique that can reproduce the desired sound field in a spherical region by controlling the sound intensity on the surface of the region, and (iv) two intensity based multizone sound field reproduction algorithms that can reproduce the desired sound field over multiple spatial zones. Finally, these techniques are evaluated by comparing to the conventional approaches through numerical simulations and real-world experiments

    Enhanced Immersion for Binaural Audio Reproduction of Ambisonics in Six-Degrees-of-Freedom: The Effect of Added Distance Information

    Get PDF
    The immersion of the user is of key interest in the reproduction of acoustic scenes in virtual reality. It is enhanced when movement is possible in six degrees-of-freedom, i.e., three rotational plus three translational degrees. Further enhancement of immersion can be achieved when the user is not only able to move between distant sound sources, but can also move towards and behind close sources. In this paper, we employ a reproduction method for Ambisonics recordings from a single position that uses meta information on the distance of the sound sources in the recorded acoustic scene. A subjective study investigates the benefit of said distance information. Different spatial audio reproduction methods are compared with a multi-stimulus test. Two synthetic scenes are contrasted, one with close sources the user can walk around, and one with far away sources that can not be reached. We found that for close or distant sources, loudness changing with the distance enhances the experience. In case of close sources, the use of correct distance information was found to be important

    Extracting and Re-rendering Structured Auditory Scenes from Field Recordings

    Get PDF
    International audienceWe present an approach to automatically extract and re-render a structured auditory scene from field recordings obtained with a small set of microphones, freely positioned in the environment. From the recordings and the calibrated position of the microphones, the 3D location of various auditory events can be estimated together with their corresponding content. This structured description is reproduction-setup independent. We propose solutions to classify foreground, well-localized sounds and more diffuse background ambiance and adapt our rendering strategy accordingly. Warping the original recordings during playback allows for simulating smooth changes in the listening point or position of sources. Comparisons to reference binaural and B-format recordings show that our approach achieves good spatial rendering while remaining independent of the reproduction setup and offering extended authoring capabilities

    Enabling technologies for audio augmented reality systems

    Get PDF
    Audio augmented reality (AAR) refers to technology that embeds computer-generated auditory content into a user's real acoustic environment. An AAR system has specific requirements that set it apart from regular human--computer interfaces: an audio playback system to allow the simultaneous perception of real and virtual sounds; motion tracking to enable interactivity and location-awareness; the design and implementation of auditory display to deliver AAR content; and spatial rendering to display spatialised AAR content. This thesis presents a series of studies on enabling technologies to meet these requirements. A binaural headset with integrated microphones is assumed as the audio playback system, as it allows mobility and precise control over the ear input signals. Here, user position and orientation tracking methods are proposed that rely on speech signals recorded at the binaural headset microphones. To evaluate the proposed methods, the head orientations and positions of three conferees engaged in a discussion were tracked. The binaural microphones improved tracking performance substantially. The proposed methods are applicable to acoustic tracking with other forms of user-worn microphones. Results from a listening test investigating the effect of auditory display parameters on user performance are reported. The parameters studied were derived from the design choices to be made when implementing auditory display. The results indicate that users are able to detect a sound sample among distractors and estimate sample numerosity accurately with both speech and non-speech audio, if the samples are presented with adequate temporal separation. Whether or not samples were separated spatially had no effect on user performance. However, with spatially separated samples, users were able to detect a sample among distractors and simultaneously localise it. The results of this study are applicable to a variety of AAR applications that require conveying sample presence or numerosity. Spatial rendering is commonly implemented by convolving virtual sounds with head-related transfer functions (HRTFs). Here, a framework is proposed that interpolates HRTFs measured at arbitrary directions and distances. The framework employs Delaunay triangulation to group HRTFs into subsets suitable for interpolation and barycentric coordinates as interpolation weights. The proposed interpolation framework allows the realtime rendering of virtual sources in the near-field via HRTFs measured at various distances
    • …
    corecore