93 research outputs found

    Comparison of design concepts in multi-criteria decision-making using level diagrams

    Full text link
    [EN] In this work, we address the evaluation of design concepts and the analysis of multiple Pareto fronts in multi-criteria decision-making using level diagrams. Such analysis is relevant when two (or more) design concepts with different design alternatives lie in the same objective space, but describe different Pareto fronts. Therefore, the problem can be stated as a Pareto front comparison between two (or more) design concepts that only differ in their relative complexity, implementation issues, or the theory applied to solve the problem at hand. Such analysis will help the decision maker obtain a better insight of a conceptual solution and be able to decide if the use of a complex concept is justified instead of a simple concept. The approach is validated in a set of multi-criteria decision making benchmark problems. © 2012 Elsevier Inc. All rights reserved.This work was partially supported by the FPI-2010/19 Grant and Project PAID-06-11 from the Universitat Politecnica de Valencia and by Projects ENE2011-25900, TIN2011-28082 (Spanish Ministry of Science and Innovation) and GV/2012/073, PROMETEO/2012/028 (Generalitat Valenciana).Reynoso Meza, G.; Blasco Ferragud, FX.; Sanchís Saez, J.; Herrero Durá, JM. (2013). Comparison of design concepts in multi-criteria decision-making using level diagrams. INFORMATION SCIENCES. 221(1):124-141. https://doi.org/10.1016/j.ins.2012.09.049S124141221

    Control design for UAV quadrotors via embedded model control

    Get PDF
    In this paper, a control system for unmanned aerial vehicles (UAVs) is designed, tested in simulation by means of a high-fidelity simulator, and then applied to a real quadrotor UAV. A novel approach is proposed for the control design, based on the combination of two methodologies: feedback linearization (FL) and embedded model control (EMC). FL allows us to properly transform the UAV dynamics into a form suitable for EMC; EMC is then used to control the transformed system. A key feature of EMC is that it encompasses a so-called extended state observer (ESO), which not only recovers the system state but also gives a real-time estimate of all the disturbances/uncertainties affecting the system. This estimate is used by the FL-EMC control law to reject the aforementioned disturbances/uncertainties, including those collected via the FL, allowing a robustness and performance enhancement. This approach allows us to combine FL and EMC strengths. Most notably, the entire process is made systematic and application oriented. To set-up a reliable UAV attitude observer, an effective attitude sensors fusion is proposed and also benchmarked with an enhanced complementary filter. Finally, to enhance the closed-loop performance, a complete tuning procedure, encompassing frequency requirements, is outlined, based on suitably defined stability and performance metrics

    Goal-Based Control and Planning in Biped Locomotion Using Computational Intelligence Methods

    Get PDF
    Este trabajo explora la aplicación de campos neuronales, a tareas de control dinámico en el domino de caminata bípeda. En una primera aproximación, se propone una arquitectura de control que usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el problema de estabilidad para el péndulo invertido de carro y barra, usado como modelo simplificado de caminata bípeda. El controlador por campos neuronales, parametrizado tanto manualmente como usando un algoritmo evolutivo (EA), se compara con una arquitectura de control basada en redes neuronales recurrentes (RNN), también parametrizada por por un EA. El controlador por campos neuronales parametrizado por EA se desempeña mejor que el parametrizado manualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más problemáticas. Luego, se desarrolla una arquitectura extendida de control y planificación usando campos neurales en 2D, y se aplica al problema caminata bípeda simple (SBW). Para ello se usa un conjunto de valores _óptimos para el parámetro de control, encontrado previamente usando algoritmos evolutivos. El controlador óptimo por campos neuronales obtenido se compara con el controlador lineal propuesto por Wisse et al., y a un controlador _optimo tabular que usa los mismos parámetros óptimos. Si bien los controladores propuestos para el problema SBW implementan una estrategia activa de control, se aproximan de manera más cercana a la caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción de control acumulada. / Abstract. This work explores the application of neural fields to dynamical control tasks in the domain of biped walking. In a first approximation, a controller architecture that uses 1D neural fields is proposed. This controller architecture is evaluated using the stability problem for the cart-and-pole inverted pendulum, as a simplified biped walking model. The neural field controller is compared, parameterized both manually and using an evolutionary algorithm (EA), to a controller architecture based on a recurrent neural neuron (RNN), also parametrized by an EA. The non-evolved neural field controller performs better than the RNN controller. Also, the evolved neural field controller performs better than the non-evolved one and is able to recover fast from worst-case initial conditions. Then, an extended control and planning architecture using 2D neural fields is developed and applied to the SBW problem. A set of optimal parameter values, previously found using an EA, is used as parameters for neural field controller. The optimal neural field controller is compared to the linear controller proposed by Wisse et al., and to a table-lookup controller using the same optimal parameters. While being an active control strategy, the controllers proposed here for the SBW problem approach more closely Passive Dynamic Walking (PDW) than previous works, by diminishing the cumulative control action.Maestrí

    Scheduling of Two Real-Time Tasks with Non-Fixed Sampling Rates Modelled on an Unmanned Air Vehicle with Autonomous Navigation and Image Processing Capabilities

    Get PDF
    Control tasks and scheduling problems are usually treated in separate contexts, but when they are implemented in a real-time system their co-design becomes essential, as it will allow a better use of the limited computational resources. This project regards the creation of a scheduling algorithm for two real-time tasks sharing the same Processing Unit. Once a theoretical solution has been developed, it will be applied to a realistic scenario: UAV control with image processing abilities.ope

    Control and performance studies on the differential compound engine

    Get PDF

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Advanced decision support through real-time optimization in the process industry

    Get PDF
    En la industria de procesos se puede obtener un aumento de la eficiencia de las plantas de producción, bien mediante la sustitución de procesos o equipos antiguos por otros más modernos y eficientes, o bien operando de forma más eficiente las instalaciones actuales en lugar de realizar grandes inversiones con tiempos de amortización inciertos. Si nos centramos en esta segunda línea de acción, hoy en día la toma de decisiones es conceptualmente más compleja que en el pasado, debido al rápido crecimiento que ha tenido la tecnología últimamente y a que los sistemas de comunicación han generado un gran número de alternativas entre las que se ha de elegir. Además, una decisión incorrecta o subóptima, con la complejidad estructural de los problemas actuales, a menudo resulta en un aumento de los costes a lo largo de la cadena de producción. A pesar de ello, el uso de sistemas de apoyo a la toma de decisiones (DSS) sigue siendo atípico en las industrias de procesos debido a los esfuerzos que se requieren en términos de desarrollo y mantenimiento de modelos matemáticos y al desafío de formulaciones matemáticas complejas, los exigentes requisitos computacionales y/o la difícil integración con la infraestructura de control o planificación existente. Esta tesis contribuye en la reducción de estas barreras desarrollando formulaciones eficientes para la optimización en tiempo real (RTO) en una planta industrial. En particular, esta tesis busca mejorar la operación de tres secciones interconectadas de una fábrica de producción de fibra de viscosa: una red de evaporación, una de sistema de enfriamiento y una red de recuperación de calor.Departamento de Ingeniería de Sistemas y AutomáticaDoctorado en Ingeniería Industria
    • …
    corecore