25 research outputs found

    The Hopf algebra of diagonal rectangulations

    Get PDF
    We define and study a combinatorial Hopf algebra dRec with basis elements indexed by diagonal rectangulations of a square. This Hopf algebra provides an intrinsic combinatorial realization of the Hopf algebra tBax of twisted Baxter permutations, which previously had only been described extrinsically as a sub Hopf algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. We describe the natural lattice structure on diagonal rectangulations, analogous to the Tamari lattice on triangulations, and observe that diagonal rectangulations index the vertices of a polytope analogous to the associahedron. We give an explicit bijection between twisted Baxter permutations and the better-known Baxter permutations, and describe the resulting Hopf algebra structure on Baxter permutations.Comment: Very minor changes from version 1, in response to comments by referees. This is the final version, to appear in JCTA. 43 pages, 17 figure

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    We show that each quadrangulation on nn vertices has a closed rectangle of influence drawing on the (n−2)×(n−2)(n-2) \times (n-2) grid. Further, we present a simple algorithm to obtain a straight-line drawing of a quadrangulation on the ⌈n2⌉×⌈3n4⌉\Big\lceil\frac{n}{2}\Big\rceil \times \Big\lceil\frac{3n}{4}\Big\rceil grid. This is not optimal but has the advantage over other existing algorithms that it is not needed to add edges to the quadrangulation to make it 44-connected. The algorithm is based on angle labeling and simple face counting in regions analogous to Schnyder's grid embedding for triangulation. This extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden (2008). Our approach also yields a representation of a quadrangulation as a pair of rectangulations with a curious property

    On the number of rectangulations of a planar point set

    Get PDF
    AbstractWe investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (nonintersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the (n+1)st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schröder number, and the total number of rectangulations is O(20n/n4)

    Combinatorial generation via permutation languages

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n−1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope

    Efficient Generation of Rectangulations via Permutation Languages

    Get PDF
    A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework

    Bijections for Baxter Families and Related Objects

    Get PDF
    The Baxter number can be written as Bn=∑0nΘk,n−k−1B_n = \sum_0^n \Theta_{k,n-k-1}. These numbers have first appeared in the enumeration of so-called Baxter permutations; BnB_n is the number of Baxter permutations of size nn, and Θk,l\Theta_{k,l} is the number of Baxter permutations with kk descents and ll rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers Θk,l\Theta_{k,l}. Apart from Baxter permutations, these include plane bipolar orientations with k+2k+2 vertices and l+2l+2 faces, 2-orientations of planar quadrangulations with k+2k+2 white and l+2l+2 black vertices, certain pairs of binary trees with k+1k+1 left and l+1l+1 right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of Θk,l\Theta_{k,l} as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.Comment: 31 pages, 22 figures, submitted to JCT

    Efficient generation of rectangulations via permutation languages

    Get PDF
    A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework

    Combinatorial generation via permutation languages. I. Fundamentals

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, boxed patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We also obtain new Gray codes for all the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n−1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope
    corecore