17,546 research outputs found

    Towards Evaluating Explanations of Vision Transformers for Medical Imaging

    Full text link
    As deep learning models increasingly find applications in critical domains such as medical imaging, the need for transparent and trustworthy decision-making becomes paramount. Many explainability methods provide insights into how these models make predictions by attributing importance to input features. As Vision Transformer (ViT) becomes a promising alternative to convolutional neural networks for image classification, its interpretability remains an open research question. This paper investigates the performance of various interpretation methods on a ViT applied to classify chest X-ray images. We introduce the notion of evaluating faithfulness, sensitivity, and complexity of ViT explanations. The obtained results indicate that Layerwise relevance propagation for transformers outperforms Local interpretable model-agnostic explanations and Attention visualization, providing a more accurate and reliable representation of what a ViT has actually learned. Our findings provide insights into the applicability of ViT explanations in medical imaging and highlight the importance of using appropriate evaluation criteria for comparing them.Comment: Accepted by XAI4CV Workshop at CVPR 202

    Advancing Model Pruning via Bi-level Optimization

    Full text link
    The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find 'winning tickets'. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient 'one-shot' pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating 2-7 times speedup over IMP for the same level of model accuracy and sparsity.Comment: Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022

    Identifying Student Profiles Within Online Judge Systems Using Explainable Artificial Intelligence

    Get PDF
    Online Judge (OJ) systems are typically considered within programming-related courses as they yield fast and objective assessments of the code developed by the students. Such an evaluation generally provides a single decision based on a rubric, most commonly whether the submission successfully accomplished the assignment. Nevertheless, since in an educational context such information may be deemed insufficient, it would be beneficial for both the student and the instructor to receive additional feedback about the overall development of the task. This work aims to tackle this limitation by considering the further exploitation of the information gathered by the OJ and automatically inferring feedback for both the student and the instructor. More precisely, we consider the use of learning-based schemes—particularly, Multi-Instance Learning and classical Machine Learning formulations—to model student behaviour. Besides, Explainable Artificial Intelligence is contemplated to provide human-understandable feedback. The proposal has been evaluated considering a case of study comprising 2,500 submissions from roughly 90 different students from a programming-related course in a Computer Science degree. The results obtained validate the proposal: the model is capable of significantly predicting the user outcome (either passing or failing the assignment) solely based on the behavioural pattern inferred by the submissions provided to the OJ. Moreover, the proposal is able to identify prone-to-fail student groups and profiles as well as other relevant information, which eventually serves as feedback to both the student and the instructor.This work has been partially funded by the “Programa Redes-I3CE de investigacion en docencia universitaria del Instituto de Ciencias de la Educacion (REDES-I3CE-2020-5069)” of the University of Alicante. The third author is supported by grant APOSTD/2020/256 from “Programa I+D+I de la Generalitat Valenciana”

    Semantic Segmentation Enhanced Transformer Model for Human Attention Prediction

    Full text link
    Saliency Prediction aims to predict the attention distribution of human eyes given an RGB image. Most of the recent state-of-the-art methods are based on deep image feature representations from traditional CNNs. However, the traditional convolution could not capture the global features of the image well due to its small kernel size. Besides, the high-level factors which closely correlate to human visual perception, e.g., objects, color, light, etc., are not considered. Inspired by these, we propose a Transformer-based method with semantic segmentation as another learning objective. More global cues of the image could be captured by Transformer. In addition, simultaneously learning the object segmentation simulates the human visual perception, which we would verify in our investigation of human gaze control in cognitive science. We build an extra decoder for the subtask and the multiple tasks share the same Transformer encoder, forcing it to learn from multiple feature spaces. We find in practice simply adding the subtask might confuse the main task learning, hence Multi-task Attention Module is proposed to deal with the feature interaction between the multiple learning targets. Our method achieves competitive performance compared to other state-of-the-art methods

    Neural Architecture Search: Insights from 1000 Papers

    Full text link
    In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries

    Pretrained Embeddings for E-commerce Machine Learning: When it Fails and Why?

    Full text link
    The use of pretrained embeddings has become widespread in modern e-commerce machine learning (ML) systems. In practice, however, we have encountered several key issues when using pretrained embedding in a real-world production system, many of which cannot be fully explained by current knowledge. Unfortunately, we find that there is a lack of a thorough understanding of how pre-trained embeddings work, especially their intrinsic properties and interactions with downstream tasks. Consequently, it becomes challenging to make interactive and scalable decisions regarding the use of pre-trained embeddings in practice. Our investigation leads to two significant discoveries about using pretrained embeddings in e-commerce applications. Firstly, we find that the design of the pretraining and downstream models, particularly how they encode and decode information via embedding vectors, can have a profound impact. Secondly, we establish a principled perspective of pre-trained embeddings via the lens of kernel analysis, which can be used to evaluate their predictability, interactively and scalably. These findings help to address the practical challenges we faced and offer valuable guidance for successful adoption of pretrained embeddings in real-world production. Our conclusions are backed by solid theoretical reasoning, benchmark experiments, as well as online testings

    Information-Theoretic GAN Compression with Variational Energy-based Model

    Full text link
    We propose an information-theoretic knowledge distillation approach for the compression of generative adversarial networks, which aims to maximize the mutual information between teacher and student networks via a variational optimization based on an energy-based model. Because the direct computation of the mutual information in continuous domains is intractable, our approach alternatively optimizes the student network by maximizing the variational lower bound of the mutual information. To achieve a tight lower bound, we introduce an energy-based model relying on a deep neural network to represent a flexible variational distribution that deals with high-dimensional images and consider spatial dependencies between pixels, effectively. Since the proposed method is a generic optimization algorithm, it can be conveniently incorporated into arbitrary generative adversarial networks and even dense prediction networks, e.g., image enhancement models. We demonstrate that the proposed algorithm achieves outstanding performance in model compression of generative adversarial networks consistently when combined with several existing models.Comment: Accepted at Neurips202

    On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective

    Full text link
    ChatGPT is a recent chatbot service released by OpenAI and is receiving increasing attention over the past few months. While evaluations of various aspects of ChatGPT have been done, its robustness, i.e., the performance to unexpected inputs, is still unclear to the public. Robustness is of particular concern in responsible AI, especially for safety-critical applications. In this paper, we conduct a thorough evaluation of the robustness of ChatGPT from the adversarial and out-of-distribution (OOD) perspective. To do so, we employ the AdvGLUE and ANLI benchmarks to assess adversarial robustness and the Flipkart review and DDXPlus medical diagnosis datasets for OOD evaluation. We select several popular foundation models as baselines. Results show that ChatGPT shows consistent advantages on most adversarial and OOD classification and translation tasks. However, the absolute performance is far from perfection, which suggests that adversarial and OOD robustness remains a significant threat to foundation models. Moreover, ChatGPT shows astounding performance in understanding dialogue-related texts and we find that it tends to provide informal suggestions for medical tasks instead of definitive answers. Finally, we present in-depth discussions of possible research directions.Comment: Technical report; code is at: https://github.com/microsoft/robustlear

    Generalized Relation Modeling for Transformer Tracking

    Full text link
    Compared with previous two-stream trackers, the recent one-stream tracking pipeline, which allows earlier interaction between the template and search region, has achieved a remarkable performance gain. However, existing one-stream trackers always let the template interact with all parts inside the search region throughout all the encoder layers. This could potentially lead to target-background confusion when the extracted feature representations are not sufficiently discriminative. To alleviate this issue, we propose a generalized relation modeling method based on adaptive token division. The proposed method is a generalized formulation of attention-based relation modeling for Transformer tracking, which inherits the merits of both previous two-stream and one-stream pipelines whilst enabling more flexible relation modeling by selecting appropriate search tokens to interact with template tokens. An attention masking strategy and the Gumbel-Softmax technique are introduced to facilitate the parallel computation and end-to-end learning of the token division module. Extensive experiments show that our method is superior to the two-stream and one-stream pipelines and achieves state-of-the-art performance on six challenging benchmarks with a real-time running speed.Comment: Accepted by CVPR 2023. Code and models are publicly available at https://github.com/Little-Podi/GR

    Patching Weak Convolutional Neural Network Models through Modularization and Composition

    Full text link
    Despite great success in many applications, deep neural networks are not always robust in practice. For instance, a convolutional neuron network (CNN) model for classification tasks often performs unsatisfactorily in classifying some particular classes of objects. In this work, we are concerned with patching the weak part of a CNN model instead of improving it through the costly retraining of the entire model. Inspired by the fundamental concepts of modularization and composition in software engineering, we propose a compressed modularization approach, CNNSplitter, which decomposes a strong CNN model for NN-class classification into NN smaller CNN modules. Each module is a sub-model containing a part of the convolution kernels of the strong model. To patch a weak CNN model that performs unsatisfactorily on a target class (TC), we compose the weak CNN model with the corresponding module obtained from a strong CNN model. The ability of the weak CNN model to recognize the TC can thus be improved through patching. Moreover, the ability to recognize non-TCs is also improved, as the samples misclassified as TC could be classified as non-TCs correctly. Experimental results with two representative CNNs on three widely-used datasets show that the averaged improvement on the TC in terms of precision and recall are 12.54% and 2.14%, respectively. Moreover, patching improves the accuracy of non-TCs by 1.18%. The results demonstrate that CNNSplitter can patch a weak CNN model through modularization and composition, thus providing a new solution for developing robust CNN models.Comment: Accepted at ASE'2
    • …
    corecore