67 research outputs found

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm

    Algorithms and Hardware Co-Design of HEVC Intra Encoders

    Get PDF
    Digital video is becoming extremely important nowadays and its importance has greatly increased in the last two decades. Due to the rapid development of information and communication technologies, the demand for Ultra-High Definition (UHD) video applications is becoming stronger. However, the most prevalent video compression standard H.264/AVC released in 2003 is inefficient when it comes to UHD videos. The increasing desire for superior compression efficiency to H.264/AVC leads to the standardization of High Efficiency Video Coding (HEVC). Compared with the H.264/AVC standard, HEVC offers a double compression ratio at the same level of video quality or substantial improvement of video quality at the same video bitrate. Yet, HE-VC/H.265 possesses superior compression efficiency, its complexity is several times more than H.264/AVC, impeding its high throughput implementation. Currently, most of the researchers have focused merely on algorithm level adaptations of HEVC/H.265 standard to reduce computational intensity without considering the hardware feasibility. What’s more, the exploration of efficient hardware architecture design is not exhaustive. Only a few research works have been conducted to explore efficient hardware architectures of HEVC/H.265 standard. In this dissertation, we investigate efficient algorithm adaptations and hardware architecture design of HEVC intra encoders. We also explore the deep learning approach in mode prediction. From the algorithm point of view, we propose three efficient hardware-oriented algorithm adaptations, including mode reduction, fast coding unit (CU) cost estimation, and group-based CABAC (context-adaptive binary arithmetic coding) rate estimation. Mode reduction aims to reduce mode candidates of each prediction unit (PU) in the rate-distortion optimization (RDO) process, which is both computation-intensive and time-consuming. Fast CU cost estimation is applied to reduce the complexity in rate-distortion (RD) calculation of each CU. Group-based CABAC rate estimation is proposed to parallelize syntax elements processing to greatly improve rate estimation throughput. From the hardware design perspective, a fully parallel hardware architecture of HEVC intra encoder is developed to sustain UHD video compression at 4K@30fps. The fully parallel architecture introduces four prediction engines (PE) and each PE performs the full cycle of mode prediction, transform, quantization, inverse quantization, inverse transform, reconstruction, rate-distortion estimation independently. PU blocks with different PU sizes will be processed by the different prediction engines (PE) simultaneously. Also, an efficient hardware implementation of a group-based CABAC rate estimator is incorporated into the proposed HEVC intra encoder for accurate and high-throughput rate estimation. To take advantage of the deep learning approach, we also propose a fully connected layer based neural network (FCLNN) mode preselection scheme to reduce the number of RDO modes of luma prediction blocks. All angular prediction modes are classified into 7 prediction groups. Each group contains 3-5 prediction modes that exhibit a similar prediction angle. A rough angle detection algorithm is designed to determine the prediction direction of the current block, then a small scale FCLNN is exploited to refine the mode prediction

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Machine Learning based Efficient QT-MTT Partitioning Scheme for VVC Intra Encoders

    Full text link
    The next-generation Versatile Video Coding (VVC) standard introduces a new Multi-Type Tree (MTT) block partitioning structure that supports Binary-Tree (BT) and Ternary-Tree (TT) splits in both vertical and horizontal directions. This new approach leads to five possible splits at each block depth and thereby improves the coding efficiency of VVC over that of the preceding High Efficiency Video Coding (HEVC) standard, which only supports Quad-Tree (QT) partitioning with a single split per block depth. However, MTT also has brought a considerable impact on encoder computational complexity. In this paper, a two-stage learning-based technique is proposed to tackle the complexity overhead of MTT in VVC intra encoders. In our scheme, the input block is first processed by a Convolutional Neural Network (CNN) to predict its spatial features through a vector of probabilities describing the partition at each 4x4 edge. Subsequently, a Decision Tree (DT) model leverages this vector of spatial features to predict the most likely splits at each block. Finally, based on this prediction, only the N most likely splits are processed by the Rate-Distortion (RD) process of the encoder. In order to train our CNN and DT models on a wide range of image contents, we also propose a public VVC frame partitioning dataset based on existing image dataset encoded with the VVC reference software encoder. Our proposal relying on the top-3 configuration reaches 46.6% complexity reduction for a negligible bitrate increase of 0.86%. A top-2 configuration enables a higher complexity reduction of 69.8% for 2.57% bitrate loss. These results emphasis a better trade-off between VTM intra coding efficiency and complexity reduction compared to the state-of-the-art solutions

    Depth sequence coding with hierarchical partitioning and spatial-domain quantization

    Get PDF
    Depth coding in 3D-HEVC deforms object shapes due to block-level edge-approximation and lacks efficient techniques to exploit the statistical redundancy, due to the frame-level clustering tendency in depth data, for higher coding gain at near-lossless quality. This paper presents a standalone mono-view depth sequence coder, which preserves edges implicitly by limiting quantization to the spatial-domain and exploits the frame-level clustering tendency efficiently with a novel binary tree-based decomposition (BTBD) technique. The BTBD can exploit the statistical redundancy in frame-level syntax, motion components, and residuals efficiently with fewer block-level prediction/coding modes and simpler context modeling for context-adaptive arithmetic coding. Compared with the depth coder in 3D-HEVC, the proposed one has achieved significantly lower bitrate at lossless to near-lossless quality range for mono-view coding and rendered superior quality synthetic views from the depth maps, compressed at the same bitrate, and the corresponding texture frames. © 1991-2012 IEEE

    Speeding up VP9 Intra Encoder with Hierarchical Deep Learning Based Partition Prediction

    Full text link
    In VP9 video codec, the sizes of blocks are decided during encoding by recursively partitioning 64×\times64 superblocks using rate-distortion optimization (RDO). This process is computationally intensive because of the combinatorial search space of possible partitions of a superblock. Here, we propose a deep learning based alternative framework to predict the intra-mode superblock partitions in the form of a four-level partition tree, using a hierarchical fully convolutional network (H-FCN). We created a large database of VP9 superblocks and the corresponding partitions to train an H-FCN model, which was subsequently integrated with the VP9 encoder to reduce the intra-mode encoding time. The experimental results establish that our approach speeds up intra-mode encoding by 69.7% on average, at the expense of a 1.71% increase in the Bjontegaard-Delta bitrate (BD-rate). While VP9 provides several built-in speed levels which are designed to provide faster encoding at the expense of decreased rate-distortion performance, we find that our model is able to outperform the fastest recommended speed level of the reference VP9 encoder for the good quality intra encoding configuration, in terms of both speedup and BD-rate
    • …
    corecore