275 research outputs found

    Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson's disease and Parkinsonian syndromes

    Get PDF
    Abstract Purpose The aim of this review is to discuss the most significant contributions about the role of Artificial Intelligence (AI) techniques to support the diagnosis of movement disorders through nuclear medicine modalities. Methods The work is based on a selection of papers available on PubMed, Scopus and Web of Sciences. Articles not written in English were not considered in this study. Results Many papers are available concerning the increasing contribution of machine learning techniques to classify Parkinson's disease (PD), Parkinsonian syndromes and Essential Tremor (ET) using data derived from brain SPECT with dopamine transporter radiopharmaceuticals. Other papers investigate by AI techniques data obtained by 123I-MIBG myocardial scintigraphy to differentially diagnose PD and other Parkinsonian syndromes. Conclusion The recent literature provides strong evidence that AI techniques can play a fundamental role in the diagnosis of movement disorders by means of nuclear medicine modalities, therefore paving the way towards personalized medicine

    Multiclass prediction of different dementia syndromes based on multi-centric volumetric MRI imaging

    Get PDF
    IntroductionDementia syndromes can be difficult to diagnose. We aimed at building a classifier for multiple dementia syndromes using magnetic resonance imaging (MRI).MethodsAtlas-based volumetry was performed on T1-weighted MRI data of 426 patients and 51 controls from the multi-centric German Research Consortium of Frontotemporal Lobar Degeneration including patients with behavioral variant frontotemporal dementia, Alzheimer’s disease, the three subtypes of primary progressive aphasia, i.e., semantic, logopenic and nonfluent-agrammatic variant, and the atypical parkinsonian syndromes progressive supranuclear palsy and corticobasal syndrome. Support vector machine classification was used to classify each patient group against controls (binary classification) and all seven diagnostic groups against each other in a multi-syndrome classifier (multiclass classification).ResultsThe binary classification models reached high prediction accuracies between 71 and 95% with a chance level of 50%. Feature importance reflected disease-specific atrophy patterns. The multi-syndrome model reached accuracies of more than three times higher than chance level but was far from 100%. Multi-syndrome model performance was not homogenous across dementia syndromes, with better performance in syndromes characterized by regionally specific atrophy patterns. Whereas diseases generally could be classified vs controls more correctly with increasing severity and duration, differentiation between diseases was optimal in disease-specific windows of severity and duration.DiscussionResults suggest that automated methods applied to MR imaging data can support physicians in diagnosis of dementia syndromes. It is particularly relevant for orphan diseases beside frequent syndromes such as Alzheimer’s disease

    Prediction of neurodegenerative diseases from functional brain imaging data

    Get PDF
    Neurodegenerative diseases are a challenge, especially in the developed society where life expectancy is high. Since these diseases progress slowly, they are not easy to diagnose at an early stage. Moreover, they portray similar disease features, which makes them hard to differentiate. In this thesis, the objective was to devise techniques to extract biomarkers from brain data for the prediction and classification of neurodegenerative diseases, in particular parkinsonian syndromes. We used principal component analysis in combination with the scaled subprofile model to extract features from the brain data to classify these disorders. Thereafter, the features were provided to several classifiers, i.e., decision trees, generalized matrix learning vector quantization, and support vector machine to classify the parkinsonian syndromes. A validation of the classifiers was performed. The decision tree method was compared to the stepwise regression method which aims at linearly combining a few good principal components. The stepwise regression method performed better than the decision tree method in the classification of the parkinsonian syndromes. Combining the two methods is feasible. The decision trees helped us to visualize the classification results, hence providing an insight into the distribution of features. Both generalized matrix learning vector quantization and support vector machine are better than the decision tree method in the classification of early-stage parkinsonian syndromes. All the classification methods used in this thesis performed well with later disease stage data. We conclude that generalized matrix learning vector quantization and decision tree methods can be recommended for further research on neurodegenerative disease classification and prediction

    Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks

    Get PDF
    Differentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using 18F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided.This work is part of a project approved by the Andalucía Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union's Seventh Framework Program, Marie Sklodowska-Curie actions (COFUND Grant Agreement no 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía. The work was also supported by the University of Granada (Spain), the University for Munich (Germany), the MICINN (Spain) under the TEC2012–34306 project and the Consejera de Innovacin, Ciencia y Empresa (Junta de Andaluca, Spain) under the P11–TIC–7103 excellence project

    Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes

    Get PDF
    Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context. Objective: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging. Design, setting, and participants: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes. Interventions: N.A. Main outcomes and measures: Cohen's kappa, accuracy, and F1-score to assess model performance. Results: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy. Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best

    Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation

    Get PDF
    Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; AlemaniaFil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados UnidosFil: Köhler, Richard. Charité – Universitätsmedizin Berlin; AlemaniaFil: Haufe, Stefan. Charité – Universitätsmedizin Berlin; AlemaniaFil: Richardson, R. Mark. Harvard Medical School; Estados UnidosFil: Neumann, Wolf Julian. Charité – Universitätsmedizin Berlin; Alemani

    Gait rehabilitation monitor

    Get PDF
    This work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.Este trabalho apresenta uma estrutura móvel acessível, simples e não intrusiva, que permite a monitorização e a assistência remota de pacientes durante a reabilitação da marcha, por médicos e fisioterapeutas que monitorizam a reabilitação da marcha do paciente. O sistema inclui um conjunto de 2 IMUs (Inertial Mesaurement Units) Shimmer3 da marca Shimmer, compatíveís com Bluetooth, um smartphone Android para recolha, e pré-processamento de dados e armazenamento numa base de dados local. Algoritmos de baixa carga computacional baseados em ângulos Euler e sinais de acelerómetros, giroscópios e magnetómetros foram desenvolvidos e utilizados para a classificação e identificação de diversas perturbações da marcha. Estes algoritmos incluem o alinhamento e sincronização dos dados dos sensores IMUs usando uma referência temporal comum, além de algoritmos de detecção de passos e strides para auxiliar a segmentação dos sinais recolhidos remotamente pelaappdestaframeworke identificar os passos da marcha extraindo as características relevantes para treinar e testar um classificador que faça a predição de deficiências na marcha durante as sessões de monitorização. Um conjunto de drivers do fabricante Shimmer é usado para fazer a conexão entre a app e o conjunto de IMUs através de Bluetooth. A app desenvolvida permite aos utilizadores recolher dados e treinar um modelo de classificação para identificar os tipos de marcha normais e patológicos. O sistema fornece uma REST API disponível num servidor backend recorrendo a bibliotecas Java e Python e a uma base de dados PostgreSQL. O tipo de machine-learning é Supervisionado usando Extremely Randomized Trees. Features no domínio do tempo, da frequência e do tempo-frequência foram extraídas dos sinais recolhidos e processados para treinar o classificador. Para testar a estrutura, um conjunto de marchas patológicas e normais foram utilizadas para treinar um modelo e testar o classificador
    • …
    corecore