15,437 research outputs found

    Binary addition and multiplication in cellular space

    Get PDF

    Entanglement Generation of Clifford Quantum Cellular Automata

    Full text link
    Clifford quantum cellular automata (CQCAs) are a special kind of quantum cellular automata (QCAs) that incorporate Clifford group operations for the time evolution. Despite being classically simulable, they can be used as basic building blocks for universal quantum computation. This is due to the connection to translation-invariant stabilizer states and their entanglement properties. We will give a self-contained introduction to CQCAs and investigate the generation of entanglement under CQCA action. Furthermore, we will discuss finite configurations and applications of CQCAs.Comment: to appear in the "DPG spring meeting 2009" special issue of Applied Physics

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Geometric combinatorial algebras: cyclohedron and simplex

    Full text link
    In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer algebra of permutations and the Loday-Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra (one-sided) with basis all the faces of the simplices.Comment: 23 figures, new expanded section about Hopf algebra of simplices, with journal correction
    • …
    corecore