32 research outputs found

    Binary Turbo Coding with Interblock Memory

    Get PDF
    [[abstract]]We investigate the performance of binary codes T constructed from turbo coding with interblock memory. The encoding of T is implemented by serially concatenating a multiplexer, a multilevel delay processor, and a signal mapper to the encoder of a conventional binary turbo code C. With such a construction, in T, there is some irregularity for the code bits in C. To provide more variety of irregularity, we can construct TC which is obtained by passing only a fraction of C through a multilevel delay processor and a signal mapper. We propose iterative decoding between adjacent codewords (IDAC), which provides error performance much better than the iterative decoding within a single codeword (IDSC). Simulation shows that T can have a lower error floor than C for either short or long code length. In some cases, TC can provide better error floors and waterfall regions than C.[[fileno]]2030133030003[[department]]電機工程學

    Wavelet-based distributed source coding of video

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Antalya, Turkey, 200

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Symbol by Symbol Soft-Input Soft-Output Multiuser Detection for Frequency Selective Mimo Channels

    Get PDF
    We introduce a symbol by symbol, soft-input soft-output (SISO) multiuser detector for frequency selective multiple-input multiple-output (MIMO) channels. The basic principle of this algorithm is to extract a posteriori probabilities (APPs) of all interfering symbols at each symbol interval and then feed these updated APPs as a priori probabilities (apPs) for joint APP extraction in the next symbol interval. Unlike nearoptimal block oriented sphere decoding (SD) and soft decision equalization (SDE), the computational complexity of this updating APP (UA) algorithm is linear in the number of symbols but the exponential computational load of optimal joint APP extraction makes the basic UA impractical. To decrease computations we replace the optimal joint APP extractor by a groupwise SISO multiuser detector with a soft sphere decoding core. The resulting reduced complexity updating APP (RCUA) equalizer is flexible in different situations and outperforms the traditional sub-optimal MMSE-DFE without increasing the computational costs substantially

    OFDM techniques for multimedia data transmission

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is an efficient parallel data transmission scheme that has relatively recently become popular in both wired and wireless communication systems for the transmission of multimedia data. OFDM can be found at the core of well known systems such as digital television/radio broadcasting, ADSL internet and wireless LANs. Research into the OFDM field continually looks at different techniques to attempt to make this type of transmission more efficient. More recent works in this area have considered the benefits of using wavelet transforms in place of the Fourier transforms traditionally used in OFDM systems and other works have looked at data compression as a method of increasing throughput in these types of transmission systems. The work presented in this thesis considers the transmission of image and video data in traditional OFDM transmission and discusses the strengths and weaknesses of this method. This thesis also proposes a new type of OFDM system that combines transmission and data compression into one block. By merging these two processes into one the complexity of the system is reduced, therefore promising to increase system efficiency. The results presented in this thesis show the novel compressive OFDM method performs well in channels with a low signal-to-noise ratio. Comparisons with traditional OFDM with lossy compression show a large improvement in the quality of the data received with the new system when used in these noisy channel environments. The results also show superior results are obtained when transmitting image and video data using the new method, the high correlative properties of images are ideal for effective transmission using the new technique. The new transmission technique proposed in this thesis also gives good results when considering computation time. When compared to MATLAB simulations of a traditional DFT-based OFDM system with a separate compression block, the proposed transmission method was able to reduce the computation time by between a half to three-quarters. This decrease in computational complexity also contributes to transmission efficiency when considering the new method

    Iterative multipacket detection with FDE based MAC protocol in vehicular ad hoc networks

    Get PDF
    Wireless access in vehicular environments (WAVE), is especially designed to support vehicular ad hoc networks (VANETs) requirements, where rapidly changing channel conditions introduces unsynchronized transmissions. In such networks, instead of dealing with interferences in medium access control (MAC) layer or physical layer alone, both layers should be considered to cooperate and complement each other. In this paper, multipacket detection (MPD) technique with frequency domain equalization (FDE) is proposed for VANETs, with cyclically shifted different interleavers for different nodes, to remove interference and reducing the information exchange between nodes. These promising multi-hop wireless networks are used in situations, where temporary network connectivity is needed. Therefore, to improve the communication between vehicles (V2V) and from vehicles to roadside infrastructure (V2I), MPD-FDE with interference cancellation (IC) schemes can be used iteratively to successfully decode and receive even colliding packets. For designing such a protocol, different key aspects are discussed with an emphasis on iterative MPD-FDE. Numerical results with different network nodes, show the MPD-FDE performances for coded and uncoded transmissions with different IC schemes, where successive IC (SIC) is much better than parallel IC (PIC) schemes. It is also shown that the proposed protocol provide reliable detection and excellent throughput improvements, with much less resource consumption compared to multiple random interleavers

    High Speed Turbo Tcm Ofdm For Uwb And Powerline System

    Get PDF
    Turbo Trellis-Coded Modulation (TTCM) is an attractive scheme for higher data rate transmission, since it combines the impressive near Shannon limit error correcting ability of turbo codes with the high spectral efficiency property of TCM codes. We build a punctured parity-concatenated trellis codes in which a TCM code is used as the inner code and a simple parity-check code is used as the outer code. It can be constructed by simple repetition, interleavers, and TCM and functions as standard TTCM but with much lower complexity regarding real world implementation. An iterative bit MAP decoding algorithm is associated with the coding scheme. Orthogonal Frequency Division Multiplexing (OFDM) modulation has been a promising solution for efficiently capturing multipath energy in highly dispersive channels and delivering high data rate transmission. One of UWB proposals in IEEE P802.15 WPAN project is to use multi-band OFDM system and punctured convolutional codes for UWB channels supporting data rate up to 480Mb/s. The HomePlug Networking system using the medium of power line wiring also selects OFDM as the modulation scheme due to its inherent adaptability in the presence of frequency selective channels, its resilience to jammer signals, and its robustness to impulsive noise in power line channel. The main idea behind OFDM is to split the transmitted data sequence into N parallel sequences of symbols and transmit on different frequencies. This structure has the particularity to enable a simple equalization scheme and to resist to multipath propagation channel. However, some carriers can be strongly attenuated. It is then necessary to incorporate a powerful channel encoder, combined with frequency and time interleaving. We examine the possibility of improving the proposed OFDM system over UWB channel and HomePlug powerline channel by using our Turbo TCM with QAM constellation for higher data rate transmission. The study shows that the system can offer much higher spectral efficiency, for example, 1.2 Gbps for OFDM/UWB which is 2.5 times higher than the current standard, and 39 Mbps for OFDM/HomePlug1.0 which is 3 times higher than current standard. We show several essential requirements to achieve high rate such as frequency and time diversifications, multi-level error protection. Results have been confirmed by density evolution. The effect of impulsive noise on TTCM coded OFDM system is also evaluated. A modified iterative bit MAP decoder is provided for channels with impulsive noise with different impulsivity

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv

    Advanced Statistical Signal Processing Methods in Sensing, Detection, and Estimation for Communication Applications

    Get PDF
    The applications of wireless communications and digital signal processing have dramatically changed the way we live, work, and learn over decades. The requirement of higher throughput and ubiquitous connectivity for wireless communication systems has become prevalent nowadays. Signal sensing, detection and estimation have been prevalent in signal processing and communications for many years. The relevant studies deal with the processing of information-bearing signals for the purpose of information extraction. Nevertheless, new robust and efficient signal sensing, detection and estimation techniques are still in demand since there emerge more and more practical applications which rely on them. In this dissertation work, we proposed several novel signal sensing, detection and estimation schemes for wireless communications applications, such as spectrum sensing, symbol-detection/channel-estimation, and encoder identification. The associated theories and practice in robustness, computational complexity, and overall system performance evaluation are also provided
    corecore