504 research outputs found

    An Epistemic Interpretation of Paraconsistent Weak Kleene Logic

    Get PDF
    This paper extends Fitting's epistemic interpretation of some Kleene logics, to also account for Paraconsistent Weak Kleene logic. To achieve this goal, a dualization of Fitting's "cut-down" operator is discussed, rendering a "track-down" operator later used to represent the idea that no consistent opinion can arise from a set including an inconsistent opinion. It is shown that, if some reasonable assumptions are made, the truth-functions of Paraconsistent Weak Kleene coincide with certain operations defined in this track-down fashion. Finally, further reflections on conjunction and disjunction in the weak Kleene logics accompany this paper, particularly concerning their relation with containment logics. These considerations motivate a special approach to defining sound and complete Gentzen-style sequent calculi for some of their four-valued generalizations

    Relevant Logics Obeying Component Homogeneity

    Get PDF
    This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete sequent calculi for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues

    Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

    Full text link
    We present two embeddings of infinite-valued Lukasiewicz logic L into Meyer and Slaney's abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of complexity co-NP; unlabelled single sequent calculi for A and L.Comment: 35 pages, 1 figur

    Theories of truth based on four-valued infectious logics

    Get PDF
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least some of these sentences as infectious. This leads us to consider four distinct four-valued logics: one where truth-value gaps are infectious, but gluts are not; one where truth-value gluts are infectious, but gaps are not; and two logics where both gluts and gaps are infectious, in some sense. Additionally, we focus on the proof theory of these systems, by offering a discussion of two related topics. On the one hand, we prove some limitations regarding the possibility of providing standard Gentzen sequent calculi for these systems, by dualizing and extending some recent results for infectious logics. On the other hand, we provide sound and complete four-sided sequent calculi, arguing that the most important technical and philosophical features taken into account to usually prefer standard calculi are, indeed, enjoyed by the four-sided systems

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    Sequent Calculi for the classical fragment of Bochvar and Halld\'en's Nonsense Logics

    Full text link
    In this paper sequent calculi for the classical fragment (that is, the conjunction-disjunction-implication-negation fragment) of the nonsense logics B3, introduced by Bochvar, and H3, introduced by Halld\'en, are presented. These calculi are obtained by restricting in an appropriate way the application of the rules of a sequent calculus for classical propositional logic CPL. The nice symmetry between the provisos in the rules reveal the semantical relationship between these logics. The Soundness and Completeness theorems for both calculi are obtained, as well as the respective Cut elimination theorems.Comment: In Proceedings LSFA 2012, arXiv:1303.713
    • …
    corecore