100,720 research outputs found

    Pseudo Random Binary Sequences Obtained Using Novel Chaos Based Key Stream Generator and their Auto-correlation Properties

    Get PDF
    In this paper, psuedo random binary sequences are generated from the “Chaos Based Key Stream Generator- using novel Permutation technique with two dimensional patterns and substitution technique with Z4 mapping” and investigation of auto correlation property for the generated seuwnces is presented. Initially a chaotic function, considering Logistic map is used to generate a Pseudo Random Numbers (PRNs). Then these numbers are converted into binary sequences using binary mapping. These sequences are further modified by novel permutation techniques defined using 2-Dimensional patterns, and substitution technique defined over Z4 transformation in order to improve their statistical properties. The resulting sequences are investigated for auto correlation properties using Normalized Hamming Auto Correlation function. The purpose of this work is to assessing the quality of sequences of uniformly distributed pseudorandom numbers from the proposed generator. It is found that, generated sequences exhibit good auto-correlation property which is suitable for key sequence or secret key for cryptographic applications

    Performance Assessment of Polyphase Sequences Using Cyclic Algorithm

    Get PDF
    Polyphase Sequences (known as P1, P2, Px, Frank) exist for a square integer length with good auto correlation properties are helpful in the several applications. Unlike the Barker and Binary Sequences which exist for certain length and exhibits a maximum of two digit merit factor. The Integrated Sidelobe level (ISL) is often used to define excellence of the autocorrelation properties of given Polyphase sequence. In this paper, we present the application of Cyclic Algorithm named CA which minimizes the ISL (Integrated Sidelobe Level) related metric which in turn improve the Merit factor to a greater extent is main thing in applications like RADAR, SONAR and communications. To illustrate the performance of the P1, P2, Px, Frank sequences when cyclic Algorithm is applied. we presented a number of examples for integer lengths. CA(Px) sequence exhibits the good Merit Factor among all the Polyphase sequences that are considered

    Binary GH Sequences for Multiparty Communication

    Full text link
    This paper investigates cross correlation properties of sequences derived from GH sequences modulo p, where p is a prime number and presents comparison with cross correlation properties of pseudo noise sequences. For GH sequences modulo prime, a binary random sequence B(n) is constructed, based on whether the period is p-1 (or a divisor) or 2p+2 (or a divisor). We show that B(n) sequences have much less peak cross correlation compared to PN sequence fragments obtained from the same generator. Potential applications of these sequences to cryptography are sketched.Comment: 7 pages, 6 figure

    Identification of Amino Acid Sequences with Good Folding Properties in an Off-Lattice Model

    Full text link
    Folding properties of a two-dimensional toy protein model containing only two amino-acid types, hydrophobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of statistical and artificial neural network methods from which it is concluded that the folding properties can be predicted to a certain degree given the binary numbers characterizing the sequences.Comment: 15 pages, 8 Postscript figures. Minor change

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.Comment: 39 pages, 46 figures, 2 table
    • …
    corecore