616,076 research outputs found

    Search for Binary Protostars

    Get PDF
    In an effort to shed more light on the formation process of binary stars, we have started a program to study multiplicity among nearby low- and intermediate-mass protostars using the OVRO Millimeter Array. Here, we describe the project and present the first results on the protostellar core in the Bok globule CB230 (L1177). At 10 arcsec resolution, the molecular core is resolved into two components separated by 5000 AU. The morphology and kinematics of the double core suggest that it formed from a single cloud core due to rotational fragmentation.Comment: 4 pages, 2 figures, ALMA conference proceeding

    Search Efficient Binary Network Embedding

    Full text link
    Traditional network embedding primarily focuses on learning a dense vector representation for each node, which encodes network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned dense vector representations are inefficient for large-scale similarity search, which requires to find the nearest neighbor measured by Euclidean distance in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a sparse binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations efficiently through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support much quicker network node search compared to Euclidean distance or other distance measures. Our experiments and comparisons show that BinaryNE not only delivers more than 23 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods

    The PyCBC search for gravitational waves from compact binary coalescence

    Get PDF
    We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced LIGO observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGO's sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30% increase in sensitive volume for binary neutron star systems over previous searches.Comment: 29 pages, 7 figures, accepted by Classical and Quantum Gravit

    In pursuit of the dynamic optimality conjecture

    Full text link
    In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm. Splay trees were conjectured to perform within a constant factor as any offline rotation-based search tree algorithm on every sufficiently long sequence---any binary search tree algorithm that has this property is said to be dynamically optimal. However, currently neither splay trees nor any other tree algorithm is known to be dynamically optimal. Here we survey the progress that has been made in the almost thirty years since the conjecture was first formulated, and present a binary search tree algorithm that is dynamically optimal if any binary search tree algorithm is dynamically optimal.Comment: Preliminary version of paper to appear in the Conference on Space Efficient Data Structures, Streams and Algorithms to be held in August 2013 in honor of Ian Munro's 66th birthda

    Optimal Binary Search Trees with Near Minimal Height

    Full text link
    Suppose we have n keys, n access probabilities for the keys, and n+1 access probabilities for the gaps between the keys. Let h_min(n) be the minimal height of a binary search tree for n keys. We consider the problem to construct an optimal binary search tree with near minimal height, i.e.\ with height h <= h_min(n) + Delta for some fixed Delta. It is shown, that for any fixed Delta optimal binary search trees with near minimal height can be constructed in time O(n^2). This is as fast as in the unrestricted case. So far, the best known algorithms for the construction of height-restricted optimal binary search trees have running time O(L n^2), whereby L is the maximal permitted height. Compared to these algorithms our algorithm is at least faster by a factor of log n, because L is lower bounded by log n

    Efficient Lock-free Binary Search Trees

    Full text link
    In this paper we present a novel algorithm for concurrent lock-free internal binary search trees (BST) and implement a Set abstract data type (ADT) based on that. We show that in the presented lock-free BST algorithm the amortized step complexity of each set operation - {\sc Add}, {\sc Remove} and {\sc Contains} - is O(H(n)+c)O(H(n) + c), where, H(n)H(n) is the height of BST with nn number of nodes and cc is the contention during the execution. Our algorithm adapts to contention measures according to read-write load. If the situation is read-heavy, the operations avoid helping pending concurrent {\sc Remove} operations during traversal, and, adapt to interval contention. However, for write-heavy situations we let an operation help pending {\sc Remove}, even though it is not obstructed, and so adapt to tighter point contention. It uses single-word compare-and-swap (\texttt{CAS}) operations. We show that our algorithm has improved disjoint-access-parallelism compared to similar existing algorithms. We prove that the presented algorithm is linearizable. To the best of our knowledge this is the first algorithm for any concurrent tree data structure in which the modify operations are performed with an additive term of contention measure.Comment: 15 pages, 3 figures, submitted to POD
    • …
    corecore