41 research outputs found

    Binary Particle Swarm Optimization based Biclustering of Web usage Data

    Full text link
    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketing. Experiments are conducted on real dataset to prove the efficiency of the proposed algorithms

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    The Artificial Intelligence Workbench: a retrospective review

    Get PDF
    Last decade, biomedical and bioinformatics researchers have been demanding advanced and user-friendly applications for real use in practice. In this context, the Artificial Intelligence Workbench, an open-source Java desktop application framework for scientific software development, emerged with the goal of provid-ing support to both fundamental and applied research in the domain of transla-tional biomedicine and bioinformatics. AIBench automatically provides function-alities that are common to scientific applications, such as user parameter defini-tion, logging facilities, multi-threading execution, experiment repeatability, work-flow management, and fast user interface development, among others. Moreover, AIBench promotes a reusable component based architecture, which also allows assembling new applications by the reuse of libraries from existing projects or third-party software. Ten years have passed since the first release of AIBench, so it is time to look back and check if it has fulfilled the purposes for which it was conceived to and how it evolved over time

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Facial Expression Recognition Using Uniform Local Binary Pattern with Improved Firefly Feature Selection

    Get PDF
    Facial expressions are essential communication tools in our daily life. In this paper, the uniform local binary pattern is employed to extract features from the face. However, this feature representation is very high in dimensionality. The high dimensionality would not only affect the recognition accuracy but also can impose computational constraints. Hence, to reduce the dimensionality of the feature vector, the firefly algorithm is used to select the optimal subset that leads to better classification accuracy. However, the standard firefly algorithm suffers from the risk of being trapped in local optima after a certain number of generations. Hence, this limitation has been addressed by proposing an improved version of the firefly where the great deluge algorithm (GDA) has been integrated. The great deluge is a local search algorithm that helps to enhance the exploitation ability of the firefly algorithm, thus preventing being trapped in local optima. The improved firefly algorithm has been employed in a facial expression system. Experimental results using the Japanese female facial expression database show that the proposed approach yielded good classification accuracy compared to state-of-the-art methods. The best classification accuracy obtained by the proposed method is 96.7% with 1230 selected features, whereas, Gabor-SRC method achieved 97.6% with 2560 features

    Proceedings of the International Workshop "What can FCA do for Artificial Intelligence?" (FCA4AI 2014)

    Get PDF
    International audienceThis is the third edition of the FCA4AI workshop, whose first edition was organized at ECAI 2012 Conference (Montpellier, August 2012) and second edition was organized at IJCAI 2013 Conference (Beijing, August 2013, see http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain
    corecore