6,990 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Glowworm swarm optimisation for training multi-layer perceptrons

    Get PDF

    Classification of Occluded Objects using Fast Recurrent Processing

    Full text link
    Recurrent neural networks are powerful tools for handling incomplete data problems in computer vision, thanks to their significant generative capabilities. However, the computational demand for these algorithms is too high to work in real time, without specialized hardware or software solutions. In this paper, we propose a framework for augmenting recurrent processing capabilities into a feedforward network without sacrificing much from computational efficiency. We assume a mixture model and generate samples of the last hidden layer according to the class decisions of the output layer, modify the hidden layer activity using the samples, and propagate to lower layers. For visual occlusion problem, the iterative procedure emulates feedforward-feedback loop, filling-in the missing hidden layer activity with meaningful representations. The proposed algorithm is tested on a widely used dataset, and shown to achieve 2×\times improvement in classification accuracy for occluded objects. When compared to Restricted Boltzmann Machines, our algorithm shows superior performance for occluded object classification.Comment: arXiv admin note: text overlap with arXiv:1409.8576 by other author

    A neural network architecture for implementation of expert systems for real time monitoring

    Get PDF
    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered
    • …
    corecore