1,084 research outputs found

    Identification of tumor epithelium and stroma in tissue microarrays using texture analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to assess whether texture analysis is feasible for automated identification of epithelium and stroma in digitized tumor tissue microarrays (TMAs). Texture analysis based on local binary patterns (LBP) has previously been used successfully in applications such as face recognition and industrial machine vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of epithelium (n = 41) and stroma (n = 39) were used for training a support vector machine (SVM) classifier with LBP texture features and a contrast measure C (LBP/C) as input. We optimized the classifier on a validation set (n = 576) and then assessed its performance on an independent test set of images (n = 720). Finally, the performance of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered images.</p> <p>Results</p> <p>The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from stroma according to texture: the agreement between the classifier and the human observer was 97 per cent (kappa value = 0.934, <it>P </it>< 0.0001) and the accuracy (area under the ROC curve) of the LBP/C classifier was 0.995 (CI95% 0.991-0.998). The accuracy of the corresponding classifiers based on Haralick features and Gabor-filter images were 0.976 and 0.981 respectively.</p> <p>Conclusions</p> <p>The method illustrates the capability of automated segmentation of epithelial and stromal tissue in TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and protein expression, as well as computerized analysis of the tumor microenvironment.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/4123422336534537</url></p

    Iris recognition based on 2D Gabor filter

    Get PDF
    Iris recognition is a type of biometrics technology that is based on physiological features of the human body. The objective of this research is to recognize and identify iris among many irises that are stored in a visual database. This study employed a left and right iris biometric framework for inclusion decision processing by combining image processing and artificial bee colony. The proposed approach was evaluated on a visual database of 280 colored iris pictures. The database was then divided into 28 clusters. Images were preprocessed and texture features were extracted based Gabor filters to capture both local and global details within an iris. The technique begins by comparing the attributes of the online-obtained iris picture with those of the visual database. This technique either generates a reject or approve message. The consequences of the intended work reflect the output’s accuracy and integrity. This is due to the careful selection of attributes, as well as the deployment of an artificial bee colony and data clustering, which decreased complexity and eventually increased identification rate to 100%. We demonstrate that the proposed method achieves state-of-the-art performance and that our recommended procedures outperform existing iris recognition systems
    • …
    corecore