779 research outputs found

    Constructions of Binary Optimal Locally Repairable Codes via Intersection Subspaces

    Full text link
    Locally repairable codes (LRCs), which can recover any symbol of a codeword by reading only a small number of other symbols, have been widely used in real-world distributed storage systems, such as Microsoft Azure Storage and Ceph Storage Cluster. Since binary linear LRCs can significantly reduce coding and decoding complexity, constructions of binary LRCs are of particular interest. The aim of this paper is to construct dimensional optimal binary locally repairable codes with disjoint local repair groups. We introduce how to connect intersection subspaces with binary locally repairable codes and construct dimensional optimal binary linear LRCs with locality 2b2^b (b3b\geq 3) and minimum distance d6d\geq 6 by employing intersection subspaces deduced from the direct sum. This method will sufficiently increase the number of possible repair groups of dimensional optimal LRCs, and thus efficiently expanding the range of the construction parameters while keeping the largest code rates compared with all known binary linear LRCs with minimum distance d6d\geq 6 and locality 2b2^b (b3b\geq 3).Comment: Accepted for publication in the SCIENCE CHINA Information Science

    Bounds on Binary Locally Repairable Codes Tolerating Multiple Erasures

    Full text link
    Recently, locally repairable codes has gained significant interest for their potential applications in distributed storage systems. However, most constructions in existence are over fields with size that grows with the number of servers, which makes the systems computationally expensive and difficult to maintain. Here, we study linear locally repairable codes over the binary field, tolerating multiple local erasures. We derive bounds on the minimum distance on such codes, and give examples of LRCs achieving these bounds. Our main technical tools come from matroid theory, and as a byproduct of our proofs, we show that the lattice of cyclic flats of a simple binary matroid is atomic.Comment: 9 pages, 1 figure. Parts of this paper were presented at IZS 2018. This extended arxiv version includes corrected versions of Theorem 1.4 and Proposition 6 that appeared in the IZS 2018 proceeding

    Optimal Linear and Cyclic Locally Repairable Codes over Small Fields

    Full text link
    We consider locally repairable codes over small fields and propose constructions of optimal cyclic and linear codes in terms of the dimension for a given distance and length. Four new constructions of optimal linear codes over small fields with locality properties are developed. The first two approaches give binary cyclic codes with locality two. While the first construction has availability one, the second binary code is characterized by multiple available repair sets based on a binary Simplex code. The third approach extends the first one to q-ary cyclic codes including (binary) extension fields, where the locality property is determined by the properties of a shortened first-order Reed-Muller code. Non-cyclic optimal binary linear codes with locality greater than two are obtained by the fourth construction.Comment: IEEE Information Theory Workshop (ITW) 2015, Apr 2015, Jerusalem, Israe

    On Binary Matroid Minors and Applications to Data Storage over Small Fields

    Full text link
    Locally repairable codes for distributed storage systems have gained a lot of interest recently, and various constructions can be found in the literature. However, most of the constructions result in either large field sizes and hence too high computational complexity for practical implementation, or in low rates translating into waste of the available storage space. In this paper we address this issue by developing theory towards code existence and design over a given field. This is done via exploiting recently established connections between linear locally repairable codes and matroids, and using matroid-theoretic characterisations of linearity over small fields. In particular, nonexistence can be shown by finding certain forbidden uniform minors within the lattice of cyclic flats. It is shown that the lattice of cyclic flats of binary matroids have additional structure that significantly restricts the possible locality properties of F2\mathbb{F}_{2}-linear storage codes. Moreover, a collection of criteria for detecting uniform minors from the lattice of cyclic flats of a given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure

    Optimal Binary Locally Repairable Codes via Anticodes

    Full text link
    This paper presents a construction for several families of optimal binary locally repairable codes (LRCs) with small locality (2 and 3). This construction is based on various anticodes. It provides binary LRCs which attain the Cadambe-Mazumdar bound. Moreover, most of these codes are optimal with respect to the Griesmer bound
    corecore