1,281 research outputs found

    Counting and Generating Terms in the Binary Lambda Calculus (Extended version)

    Get PDF
    In a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda terms and derive results from their generating functions, especially that the number of terms of size n grows roughly like 1.963447954. .. n. In a second part we use this approach to generate random lambda terms using Boltzmann samplers.Comment: extended version of arXiv:1401.037

    Binary Lambda Calculus and Combinatory Logic

    Get PDF
    We introduce binary representations of both lambda calculus and combinatory logic terms, and demonstrate their simplicity by providing very compact parser-interpreters for these binary languages. We demonstrate their application to Algorithmic Information Theory with several concrete upper bounds on program-size complexity, including an elegant self-delimiting code for binary strings

    Counting Terms in the Binary Lambda Calculus

    Get PDF
    International audienceIn a paper entitled Binary lambda calculus and combinatory logic, John Tromp presents a simple way of encoding lambda calculus terms as binary sequences. In what follows, we study the numbers of binary strings of a given size that represent lambda terms and derive results from their generating functions, especially that the number of terms of size n grows roughly like 1.963447954^n

    Asymptotically almost all \lambda-terms are strongly normalizing

    Full text link
    We present quantitative analysis of various (syntactic and behavioral) properties of random \lambda-terms. Our main results are that asymptotically all the terms are strongly normalizing and that any fixed closed term almost never appears in a random term. Surprisingly, in combinatory logic (the translation of the \lambda-calculus into combinators), the result is exactly opposite. We show that almost all terms are not strongly normalizing. This is due to the fact that any fixed combinator almost always appears in a random combinator

    OTTER Experiments in a System of Combinatory Logic

    Full text link
    This paper describes some experiments involving the automated theorem-proving program OTTER in the system TRC of illative combinatory logic. We show how OTTER can be steered to find a contradiction in an inconsistent variant of TRC, and present some experimentally discovered identities in TRC
    • …
    corecore