2,164 research outputs found

    A Water Marking Technique for Secure Sharing Medical Data

    Get PDF
    In the current open society and with the growth of human rights, users are more worried about the privacy of their own information. This paper focuses on the secure sharing of patient’s health data record from home to respective hospital using WBAN .while sharing this information security must be provided to the health records. Alteration in the readings may lead to incorrect medical treatment .so one has to provide secure communication; it is achieved by applying digital watermarking technique. Robustness and confidentiality can be achieved by using this technique. The bio-signals such of semantic fidelity of the data is not affected the watermark cannot be corrupted easily. DOI: 10.17762/ijritcc2321-8169.150515

    A Survey on Water Marking techniques for Secure Sharing of Medical Data

    Get PDF
    The technique of transmitting biomedical signals through communication channels have become an important issue in many clinical practice related application. So a digital large capacity watermarking technique for singular value decomposition (SVD) is used for hiding these secure, confidential, private data. The Singular value decomposition (SVD) is used to realize the compression of watermark in the watermarking pre processing stage. Discrete Wavelet Transform technique is applied for image compression for better quality. For JPEG, BMP and PNG images this method is essential for construction of accurate targeted and blind steganalysis methods. DOI: 10.17762/ijritcc2321-8169.150616

    WATERMARKING METHOD OF REMOTE SENSING DATA USING STEGANOGRAPHY TECHNIQUE BASED ON LEAST SIGNIFICANT BIT HIDING

    Get PDF
    Remote sensing satellite imagery is currently needed to support the needs of information in various fields. Distribution of remote sensing data to users is done through electronic media. Therefore, it is necessary to make security and identity on remote sensing satellite images so that its function is not misused. This paper describes a method of adding confidential information to medium resolution remote sensing satellite images to identify the image using steganography technique. Steganography with the Least Significant Bit (LSB) method is chosen because the insertion of confidential information on the image is performed on the rightmost bits in each byte of data, where the rightmost bit has the smallest value. The experiment was performed on three Landsat 8 images with different area on each composite band 4,3,2 (true color) and 6,5,3 (false color). Visually the data that has been inserted information does not change with the original data. Visually, the image that has been inserted with confidential information (or stego image) is the same as the original image. Both images cannot be distinguished on histogram analysis.  The Mean Squared Error value of stego images of  all three data less than 0.053 compared with the original image.  This means that information security with steganographic techniques using the ideal LSB method is used on remote sensing satellite imagery

    Hide Secret Information in Blocks: Minimum Distortion Embedding

    Full text link
    In this paper, a new steganographic method is presented that provides minimum distortion in the stego image. The proposed encoding algorithm focuses on DCT rounding error and optimizes that in a way to reduce distortion in the stego image, and the proposed algorithm produces less distortion than existing methods (e.g., F5 algorithm). The proposed method is based on DCT rounding error which helps to lower distortion and higher embedding capacity.Comment: This paper is accepted for publication in IEEE SPIN 2020 conferenc

    A Data Hiding Method Based on Partition Variable Block Size with Exclusive-or Operation on Binary Image

    Get PDF
    In this paper, we propose a high capacity data hiding method applying in binary images. Since a binary image has only two colors, black or white, it is hard to hide data imperceptible. The capacities and imperception are always in a trade-off problem. Before embedding we shuffle the secret data by a pseudo-random number generator to keep more secure. We divide the host image into several non-overlapping (2n+1) by (2n+1) sub-blocks in an M by N host image as many as possible, where n can equal 1, 2, 3 , …, or min(M,N). Then we partition each sub-block into four overlapping (n+1) by (n+1) sub-blocks. We skip the all blacks or all whites in each (2n+1) by (2n+1) sub-blocks. We consider all four (n+1) by (n+1) sub-blocks to check the XOR between the non overlapping parts and center pixel of the (2n+1) by (2n+1) sub-block, it embed n 2 bits in each (n+1) by (n+1) sub-block, totally are 4*n 2 . The entire host image can be embedded 4×n 2×M/(2n+1)×N/(2n+1) bits. The extraction way is simply to test the XOR between center pixel with their non-overlapping part of each sub-block. All embedding bits are collected and shuffled back to the original order. The adaptive means the partitioning sub-block may affect the capacities and imperception that we want to select. The experimental results show that the method provides the large embedding capacity and keeps imperceptible and reveal the host image lossless

    Preserving privacy in edge computing

    Get PDF
    Edge computing or fog computing enables realtime services to smart application users by storing data and services at the edge of the networks. Edge devices in the edge computing handle data storage and service provisioning. Therefore, edge computing has become a  new norm for several delay-sensitive smart applications such as automated vehicles, ambient-assisted living, emergency response services, precision agriculture, and smart electricity grids. Despite having great potential, privacy threats are the main barriers to the success of edge computing. Attackers can leak private or sensitive information of data owners and modify service-related data for hampering service provisioning in edge computing-based smart applications. This research takes privacy issues of heterogeneous smart application data into account that are stored in edge data centers. From there, this study focuses on the development of privacy-preserving models for user-generated smart application data in edge computing and edge service-related data, such as Quality-of-Service (QoS) data, for ensuring unbiased service provisioning. We begin with developing privacy-preserving techniques for user data generated by smart applications using steganography that is one of the data hiding techniques. In steganography, user sensitive information is hidden within nonsensitive information of data before outsourcing smart application data, and stego data are produced for storing in the edge data center. A steganography approach must be reversible or lossless to be useful in privacy-preserving techniques. In this research, we focus on numerical (sensor data) and textual (DNA sequence and text) data steganography. Existing steganography approaches for numerical data are irreversible. Hence, we introduce a lossless or reversible numerical data steganography approach using Error Correcting Codes (ECC). Modern lossless steganography approaches for text data steganography are mainly application-specific and lacks imperceptibility, and DNA steganography requires reference DNA sequence for the reconstruction of the original DNA sequence. Therefore, we present the first blind and lossless DNA sequence steganography approach based on the nucleotide substitution method in this study. In addition, a text steganography method is proposed that using invisible character and compression based encoding for ensuring reversibility and higher imperceptibility.  Different experiments are conducted to demonstrate the justification of our proposed methods in these studies. The searching capability of the stored stego data is challenged in the edge data center without disclosing sensitive information. We present a privacy-preserving search framework for stego data on the edge data center that includes two methods. In the first method, we present a keyword-based privacy-preserving search method that allows a user to send a search query as a hash string. However, this method does not support the range query. Therefore, we develop a range search method on stego data using an order-preserving encryption (OPE) scheme. In both cases, the search service provider retrieves corresponding stego data without revealing any sensitive information. Several experiments are conducted for evaluating the performance of the framework. Finally, we present a privacy-preserving service computation framework using Fully Homomorphic Encryption (FHE) based cryptosystem for ensuring the service provider's privacy during service selection and composition. Our contributions are two folds. First, we introduce a privacy-preserving service selection model based on encrypted Quality-of-Service (QoS) values of edge services for ensuring privacy. QoS values are encrypted using FHE. A distributed computation model for service selection using MapReduce is designed for improving efficiency. Second, we develop a composition model for edge services based on the functional relationship among edge services for optimizing the service selection process. Various experiments are performed in both centralized and distributed computing environments to evaluate the performance of the proposed framework using a synthetic QoS dataset

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique
    • …
    corecore