4 research outputs found

    Automatic Rural Road Centerline Extraction from Aerial Images for a Forest Fire Support System

    Get PDF
    In the last decades, Portugal has been severely affected by forest fires which have caused massive damage both environmentally and socially. Having a well-structured and precise mapping of rural roads is critical to help firefighters to mitigate these events. The traditional process of extracting rural roads centerlines from aerial images is extremely time-consuming and tedious, because the mapping operator has to manually label the road area and extract the road centerline. A frequent challenge in the process of extracting rural roads centerlines is the high amount of environmental complexity and road occlusions caused by vehicles, shadows, wild vegetation, and trees, bringing heterogeneous segments that can be further improved. This dissertation proposes an approach to automatically detect rural road segments as well as extracting the road centerlines from aerial images. The proposed method focuses on two main steps: on the first step, an architecture based on a deep learning model (DeepLabV3+) is used, to extract the road features maps and detect the rural roads. On the second step, the first stage of the process is an optimization for improving road connections, as well as cleaning white small objects from the predicted image by the neural network. Finally, a morphological approach is proposed to extract the rural road centerlines from the previously detected roads by using thinning algorithms like the Zhang-Suen and Guo-Hall methods. With the automation of these two stages, it is now possible to detect and extract road centerlines from complex rural environments automatically and faster than the traditional ways, and possibly integrating that data in a Geographical Information System (GIS), allowing the creation of real-time mapping applications.Nas últimas décadas, Portugal tem sido severamente afetado por fogos florestais, que têm causado grandes estragos ambientais e sociais. Possuir um sistema de mapeamento de estradas rurais bem estruturado e preciso é essencial para ajudar os bombeiros a mitigar este tipo de eventos. Os processos tradicionais de extração de eixos de via em estradas rurais a partir de imagens aéreas são extremamente demorados e fastidiosos. Um desafio frequente na extração de eixos de via de estradas rurais é a alta complexidade dos ambientes rurais e de estes serem obstruídos por veículos, sombras, vegetação selvagem e árvores, trazendo segmentos heterogéneos que podem ser melhorados. Esta dissertação propõe uma abordagem para detetar automaticamente estradas rurais, bem como extrair os eixos de via de imagens aéreas. O método proposto concentra-se em duas etapas principais: na primeira etapa é utilizada uma arquitetura baseada em modelos de aprendizagem profunda (DeepLabV3+), para detetar as estradas rurais. Na segunda etapa, primeiramente é proposta uma otimização de intercessões melhorando as conexões relativas aos eixos de via, bem como a remoção de pequenos artefactos que estejam a introduzir ruído nas imagens previstas pela rede neuronal. E, por último, é utilizada uma abordagem morfológica para extrair os eixos de via das estradas previamente detetadas recorrendo a algoritmos de esqueletização tais como os algoritmos Zhang-Suen e Guo-Hall. Automatizando estas etapas, é então possível extrair eixos de via de ambientes rurais de grande complexidade de forma automática e com uma maior rapidez em relação aos métodos tradicionais, permitindo, eventualmente, integrar os dados num Sistema de Informação Geográfica (SIG), possibilitando a criação de aplicativos de mapeamento em tempo real

    Global and local feature-based transformations for fingerprint data protection

    Get PDF
    Due to its non-shareable characteristic, biometrics has been widely implemented for authenticating users. This characteristic asserts that biometrics meets the non-repudiation requirement which is one of the key factors in the authentication system. Among biometric modalities, fingerprints have the best capability for satisfying both technical and social aspects of an authentication system. Nevertheless, similar to other modalities, once the stored fingerprint template has been compromised, the effect will be forever since the fingerprint pattern is permanent. So, a mechanism which can protect this fingerprint pattern is desired. Common cryptographic approaches, however, do not work due to uncertainty in the captured fingerprint image caused by disturbing factors either in the scanner or in the finger itself. While authenticating fingerprints in a plain format is not secure, in a cipher format it is impractical because slightly different inputs result in completely different outputs. Therefore, a specific transformation mechanism is needed: one which is able to accept similar fingerprints and reject dissimilar fingerprints, while at the same time generating a relatively non-invertible fingerprint template. Most of the existing protection approaches, however, have high error rates which make them inappropriate to implement. The approaches proposed in this thesis are for addressing this problem, in particular. The proposed approaches comprise three modules: feature transformation, feature representation and feature comparison. The evaluation is to measure the accuracy, the capability for revoking the template and generating another template, and the capability for scrambling the fingerprint pattern. The first approach, which is a global feature-based transformation, is developed by exploring both the fingerprint singular point and minutiae points. The experimental results show that this approach is able to improve the existing performance, despite possible limitations (e.g., relying on the core point). In order to eliminate possible drawbacks of that global feature-based transformation, a local-based transformation is implemented by extracting only minutiae points. This has been able to eliminate the core-point dependency and at the same time produce only a slightly higher error rate than the previous proposed approach. To make further improvements, the third approach is designed in both Cartesian and polar coordinate spaces. This approach has been able to take advantages of being core point independent and at the same time generates higher performance than most of the existing approaches

    CONTACTLESS FINGERPRINT BIOMETRICS: ACQUISITION, PROCESSING, AND PRIVACY PROTECTION

    Get PDF
    Biometrics is defined by the International Organization for Standardization (ISO) as \u201cthe automated recognition of individuals based on their behavioral and biological characteristics\u201d Examples of distinctive features evaluated by biometrics, called biometric traits, are behavioral characteristics like the signature, gait, voice, and keystroke, and biological characteristics like the fingerprint, face, iris, retina, hand geometry, palmprint, ear, and DNA. The biometric recognition is the process that permits to establish the identity of a person, and can be performed in two modalities: verification, and identification. The verification modality evaluates if the identity declared by an individual corresponds to the acquired biometric data. Differently, in the identification modality, the recognition application has to determine a person's identity by comparing the acquired biometric data with the information related to a set of individuals. Compared with traditional techniques used to establish the identity of a person, biometrics offers a greater confidence level that the authenticated individual is not impersonated by someone else. Traditional techniques, in fact, are based on surrogate representations of the identity, like tokens, smart cards, and passwords, which can easily be stolen or copied with respect to biometric traits. This characteristic permitted a wide diffusion of biometrics in different scenarios, like physical access control, government applications, forensic applications, logical access control to data, networks, and services. Most of the biometric applications, also called biometric systems, require performing the acquisition process in a highly controlled and cooperative manner. In order to obtain good quality biometric samples, the acquisition procedures of these systems need that the users perform deliberate actions, assume determinate poses, and stay still for a time period. Limitations regarding the applicative scenarios can also be present, for example the necessity of specific light and environmental conditions. Examples of biometric technologies that traditionally require constrained acquisitions are based on the face, iris, fingerprint, and hand characteristics. Traditional face recognition systems need that the users take a neutral pose, and stay still for a time period. Moreover, the acquisitions are based on a frontal camera and performed in controlled light conditions. Iris acquisitions are usually performed at a distance of less than 30 cm from the camera, and require that the user assume a defined pose and stay still watching the camera. Moreover they use near infrared illumination techniques, which can be perceived as dangerous for the health. Fingerprint recognition systems and systems based on the hand characteristics require that the users touch the sensor surface applying a proper and uniform pressure. The contact with the sensor is often perceived as unhygienic and/or associated to a police procedure. This kind of constrained acquisition techniques can drastically reduce the usability and social acceptance of biometric technologies, therefore decreasing the number of possible applicative contexts in which biometric systems could be used. In traditional fingerprint recognition systems, the usability and user acceptance are not the only negative aspects of the used acquisition procedures since the contact of the finger with the sensor platen introduces a security lack due to the release of a latent fingerprint on the touched surface, the presence of dirt on the surface of the finger can reduce the accuracy of the recognition process, and different pressures applied to the sensor platen can introduce non-linear distortions and low-contrast regions in the captured samples. Other crucial aspects that influence the social acceptance of biometric systems are associated to the privacy and the risks related to misuses of biometric information acquired, stored and transmitted by the systems. One of the most important perceived risks is related to the fact that the persons consider the acquisition of biometric traits as an exact permanent filing of their activities and behaviors, and the idea that the biometric systems can guarantee recognition accuracy equal to 100\% is very common. Other perceived risks consist in the use of the collected biometric data for malicious purposes, for tracing all the activities of the individuals, or for operating proscription lists. In order to increase the usability and the social acceptance of biometric systems, researchers are studying less-constrained biometric recognition techniques based on different biometric traits, for example, face recognition systems in surveillance applications, iris recognition techniques based on images captured at a great distance and on the move, and contactless technologies based on the fingerprint and hand characteristics. Other recent studies aim to reduce the real and perceived privacy risks, and consequently increase the social acceptance of biometric technologies. In this context, many studies regard methods that perform the identity comparison in the encrypted domain in order to prevent possible thefts and misuses of biometric data. The objective of this thesis is to research approaches able to increase the usability and social acceptance of biometric systems by performing less-constrained and highly accurate biometric recognitions in a privacy compliant manner. In particular, approaches designed for high security contexts are studied in order improve the existing technologies adopted in border controls, investigative, and governmental applications. Approaches based on low cost hardware configurations are also researched with the aim of increasing the number of possible applicative scenarios of biometric systems. The privacy compliancy is considered as a crucial aspect in all the studied applications. Fingerprint is specifically considered in this thesis, since this biometric trait is characterized by high distinctivity and durability, is the most diffused trait in the literature, and is adopted in a wide range of applicative contexts. The studied contactless biometric systems are based on one or more CCD cameras, can use two-dimensional or three-dimensional samples, and include privacy protection methods. The main goal of these systems is to perform accurate and privacy compliant recognitions in less-constrained applicative contexts with respect to traditional fingerprint biometric systems. Other important goals are the use of a wider fingerprint area with respect to traditional techniques, compatibility with the existing databases, usability, social acceptance, and scalability. The main contribution of this thesis consists in the realization of novel biometric systems based on contactless fingerprint acquisitions. In particular, different techniques for every step of the recognition process based on two-dimensional and three-dimensional samples have been researched. Novel techniques for the privacy protection of fingerprint data have also been designed. The studied approaches are multidisciplinary since their design and realization involved optical acquisition systems, multiple view geometry, image processing, pattern recognition, computational intelligence, statistics, and cryptography. The implemented biometric systems and algorithms have been applied to different biometric datasets describing a heterogeneous set of applicative scenarios. Results proved the feasibility of the studied approaches. In particular, the realized contactless biometric systems have been compared with traditional fingerprint recognition systems, obtaining positive results in terms of accuracy, usability, user acceptability, scalability, and security. Moreover, the developed techniques for the privacy protection of fingerprint biometric systems showed satisfactory performances in terms of security, accuracy, speed, and memory usage
    corecore