942 research outputs found

    Binary cyclotomic generators

    Full text link

    Storing cycles in Hopfield-type networks with pseudoinverse learning rule: admissibility and network topology

    Full text link
    Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic movements. In this paper, the storage of binary cycles in neural networks is investigated. We call a cycle Σ\Sigma admissible if a connectivity matrix satisfying the cycle's transition conditions exists, and construct it using the pseudoinverse learning rule. Our main focus is on the structural features of admissible cycles and corresponding network topology. We show that Σ\Sigma is admissible if and only if its discrete Fourier transform contains exactly r=rank(Σ)r={rank}(\Sigma) nonzero columns. Based on the decomposition of the rows of Σ\Sigma into loops, where a loop is the set of all cyclic permutations of a row, cycles are classified as simple cycles, separable or inseparable composite cycles. Simple cycles contain rows from one loop only, and the network topology is a feedforward chain with feedback to one neuron if the loop-vectors in Σ\Sigma are cyclic permutations of each other. Composite cycles contain rows from at least two disjoint loops, and the neurons corresponding to the rows in Σ\Sigma from the same loop are identified with a cluster. Networks constructed from separable composite cycles decompose into completely isolated clusters. For inseparable composite cycles at least two clusters are connected, and the cluster-connectivity is related to the intersections of the spaces spanned by the loop-vectors of the clusters. Simulations showing successfully retrieved cycles in continuous-time Hopfield-type networks and in networks of spiking neurons are presented.Comment: 48 pages, 3 figure

    Global Linear Complexity Analysis of Filter Keystream Generators

    Full text link
    An efficient algorithm for computing lower bounds on the global linear complexity of nonlinearly filtered PN-sequences is presented. The technique here developed is based exclusively on the realization of bit wise logic operations, which makes it appropriate for both software simulation and hardware implementation. The present algorithm can be applied to any arbitrary nonlinear function with a unique term of maximum order. Thus, the extent of its application for different types of filter generators is quite broad. Furthermore, emphasis is on the large lower bounds obtained that confirm the exponential growth of the global linear complexity for the class of nonlinearly filtered sequences

    Modelling Nonlinear Sequence Generators in terms of Linear Cellular Automata

    Full text link
    In this work, a wide family of LFSR-based sequence generators, the so-called Clock-Controlled Shrinking Generators (CCSGs), has been analyzed and identified with a subset of linear Cellular Automata (CA). In fact, a pair of linear models describing the behavior of the CCSGs can be derived. The algorithm that converts a given CCSG into a CA-based linear model is very simple and can be applied to CCSGs in a range of practical interest. The linearity of these cellular models can be advantageously used in two different ways: (a) for the analysis and/or cryptanalysis of the CCSGs and (b) for the reconstruction of the output sequence obtained from this kind of generators.Comment: 15 pages, 0 figure

    Numerical semigroups, cyclotomic polynomials, and Bernoulli numbers

    Get PDF

    Cyclotomic numerical semigroups

    Full text link
    Given a numerical semigroup SS, we let PS(x)=(1−x)∑s∈Sxs\mathrm P_S(x)=(1-x)\sum_{s\in S}x^s be its semigroup polynomial. We study cyclotomic numerical semigroups; these are numerical semigroups SS such that PS(x)\mathrm P_S(x) has all its roots in the unit disc. We conjecture that SS is a cyclotomic numerical semigroup if and only if SS is a complete intersection numerical semigroup and present some evidence for it. Aside from the notion of cyclotomic numerical semigroup we introduce the notion of cyclotomic exponents and polynomially related numerical semigroups. We derive some properties and give some applications of these new concepts.Comment: 17 pages, accepted for publication in SIAM J. Discrete Mat

    Remarks on a cyclotomic sequence

    Get PDF
    We analyse a binary cyclotomic sequence constructed via generalized cyclotomic classes by Bai et al. (IEEE Trans Inforem Theory 51: 1849-1853, 2005). First we determine the linear complexity of a natural generalization of this binary sequence to arbitrary prime fields. Secondly we consider k-error linear complexity and autocorrelation of these sequences and point out certain drawbacks of this construction. The results show that the parameters for the sequence construction must be carefully chosen in view of the respective application
    • …
    corecore