10,771 research outputs found

    Statistical Significance of the Netflix Challenge

    Full text link
    Inspired by the legacy of the Netflix contest, we provide an overview of what has been learned---from our own efforts, and those of others---concerning the problems of collaborative filtering and recommender systems. The data set consists of about 100 million movie ratings (from 1 to 5 stars) involving some 480 thousand users and some 18 thousand movies; the associated ratings matrix is about 99% sparse. The goal is to predict ratings that users will give to movies; systems which can do this accurately have significant commercial applications, particularly on the world wide web. We discuss, in some detail, approaches to "baseline" modeling, singular value decomposition (SVD), as well as kNN (nearest neighbor) and neural network models; temporal effects, cross-validation issues, ensemble methods and other considerations are discussed as well. We compare existing models in a search for new models, and also discuss the mission-critical issues of penalization and parameter shrinkage which arise when the dimensions of a parameter space reaches into the millions. Although much work on such problems has been carried out by the computer science and machine learning communities, our goal here is to address a statistical audience, and to provide a primarily statistical treatment of the lessons that have been learned from this remarkable set of data.Comment: Published in at http://dx.doi.org/10.1214/11-STS368 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Neural Collaborative Filtering

    Full text link
    In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.Comment: 10 pages, 7 figure

    What’s going on in my city? Recommender systems and electronic participatory budgeting

    Get PDF
    In this paper, we present electronic participatory budgeting (ePB) as a novel application domain for recommender systems. On public data from the ePB platforms of three major US cities – Cambridge, Miami and New York City–, we evaluate various methods that exploit heterogeneous sources and models of user preferences to provide personalized recommendations of citizen proposals. We show that depending on characteristics of the cities and their participatory processes, particular methods are more effective than others for each city. This result, together with open issues identified in the paper, call for further research in the area

    Content-boosted Matrix Factorization Techniques for Recommender Systems

    Full text link
    Many businesses are using recommender systems for marketing outreach. Recommendation algorithms can be either based on content or driven by collaborative filtering. We study different ways to incorporate content information directly into the matrix factorization approach of collaborative filtering. These content-boosted matrix factorization algorithms not only improve recommendation accuracy, but also provide useful insights about the contents, as well as make recommendations more easily interpretable
    corecore