2,263 research outputs found

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Novel approaches to container loading: from heuristics to hybrid tabu search

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of the University ofBedford shireThis work investigates new approaches to the container loading problem which address the issue of how to load three-dimensional, rectangular items (e.g. boxes) into the container in such a way that maximum utilisation is made of the container space. This problem occurs in several industry sectors where the loading approach places cargo effectively into aeroplanes, ships, trailers or trucks in order to save considerable cost. In carrying out this work, the investigation starts by developing a new heuristic approach to the two-dimensional bin packing problem, which has lower complexity than container loading in the aspects of constraints and geometry. A novel approach, including the heuristic strategies and handling method for remaining areas, is developed that can produce good results when testing with benchmark and real world data. Based on the research for two-dimensional bin packing, a novel heuristic approach is developed to deal with the container loading problem with some practical constraints. The heuristic approach to container loading also includes heuristic strategies and the handling of remaining spaces. The heuristic strategies construct effective loading arrangements where combinations of identical or different box types are loaded in blocks. The handling method for remaining spaces further improves the loading arrangements through the representation, partitioning and merging of remaining spaces. The heuristic approach obtains better volume utilisation and the highest stability compared with other published heuristic approaches. However, it does not achieve as high a volume utilisation as metaheuristic approaches, e.g. genetic algorithms and tabu search.To improve volume utilisation, a new hybrid heuristic approach to the container loading problem is further developed based on the tabu search technique which covers the encoding, evaluation criterion and configuration of neighbourhood and candidate solutions. The heuristic strategies as well as the handling method for remaining spaces developed in the heuristic approach are used in this new hybrid tabu search approach. It is shown that the hybrid approach has better volume utilisation than the published approaches under the condition that all loaded boxes with one hundred per cent support from below. In addition, the experimental results show that both the heuristic and hybrid tabu search approaches can also be applied to the multiple container loading problem

    Optimization Models and Algorithms for Spatial Scheduling

    Get PDF
    Spatial scheduling problems involve scheduling a set of activities or jobs that each require a certain amount of physical space in order to be carried out. In these problems space is a limited resource, and the job locations, orientations, and start times must be simultaneously determined. As a result, spatial scheduling problems are a particularly difficult class of scheduling problems. These problems are commonly encountered in diverse industries including shipbuilding, aircraft assembly, and supply chain management. Despite its importance, there is a relatively scarce amount of research in the area of spatial scheduling. In this dissertation, spatial scheduling problems are studied from a mathematical and algorithmic perspective. Optimization models based on integer programming are developed for several classes of spatial scheduling problems. While the majority of these models address problems having an objective of minimizing total tardiness, the models are shown to contain a core set of constraints that are common to most spatial scheduling problems. As a result, these constraints form the basis of the models given in this dissertation and many other spatial scheduling problems with different objectives as well. The complexity of these models is shown to be at least NP-complete, and spatial scheduling problems in general are shown to be NP-hard. A lower bound for the total tardiness objective is shown, and a polynomial-time algorithm for computing this lower bound is given. The computational complexity inherent to spatial scheduling generally prevents the use of optimization models to find solutions to larger, realistic problems in a reasonable time. Accordingly, two classes of approximation algorithms were developed: greedy heuristics for finding fast, feasible solutions; and hybrid meta-heuristic algorithms to search for near-optimal solutions. A flexible hybrid algorithm framework was developed, and a number of hybrid algorithms were devised from this framework that employ local search and several varieties of simulated annealing. Extensive computational experiments showed these hybrid meta-heuristic algorithms to be effective in finding high-quality solutions over a wide variety of problems. Hybrid algorithms based on local search generally provided both the best-quality solutions and the greatest consistency
    corecore