2,389 research outputs found

    Editorial: Perceiving and Acting in the real world: from neural activity to behavior

    Get PDF
    The interaction between perception and action represents one of the pillars of human evolutionary success. Our interactions with the surrounding world involve a variety of behaviors, almost always including movements of the eyes and hands. Such actions rely on neural mechanisms that must process an enormous amount of information in order to generate appropriate motor commands. Yet, compared to the great advancements in the field of perception for cognition, the neural underpinnings of how we control our movements, as well as the interactions between perception and motor control, remain elusive. With this research topic we provide a framework for: 1) the perception of real objects and shapes using visual and haptic information, 2) the reference frames for action and perception, and 3) how perceived target properties are translated into goal-directed actions and object manipulation. The studies in this special issue employ a variety of methodologies that include behavioural kinematics, neuroimaging, transcranial magnetic stimulation and patient cases. Here we provide a brief summary and commentary on the articles included in this research topic

    Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking, and Packing

    Full text link
    Robotic picking from cluttered bins is a demanding task, for which Amazon Robotics holds challenges. The 2017 Amazon Robotics Challenge (ARC) required stowing items into a storage system, picking specific items, and packing them into boxes. In this paper, we describe the entry of team NimbRo Picking. Our deep object perception pipeline can be quickly and efficiently adapted to new items using a custom turntable capture system and transfer learning. It produces high-quality item segments, on which grasp poses are found. A planning component coordinates manipulation actions between two robot arms, minimizing execution time. The system has been demonstrated successfully at ARC, where our team reached second places in both the picking task and the final stow-and-pick task. We also evaluate individual components.Comment: In: Proceedings of the International Conference on Robotics and Automation (ICRA) 201

    The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft

    The neural bases of event monitoring across domains: a simultaneous ERP-fMRI study.

    Get PDF
    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, these transient processes rely on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts

    Proprioceptive perception of phase variability

    Get PDF
    Previous work has established that judgments of relative phase variability of 2 visually presented oscillators covary with mean relative phase. Ninety degrees is judged to be more variable than 0° or 180°, independently of the actual level of phase variability. Judged levels of variability also increase at 180°. This pattern of judgments matches the pattern of movement coordination results. Here, participants judged the phase variability of their own finger movements, which they generated by actively tracking a manipulandum moving at 0°, 90°, or 180°, and with 1 of 4 levels of Phase Variability. Judgments covaried as an inverted U-shaped function of mean relative phase. With an increase in frequency, 180° was judged more variable whereas 0° was not. Higher frequency also reduced discrimination of the levels of Phase Variability. This matching of the proprioceptive and visual results, and of both to movement results, supports the hypothesized role of online perception in the coupling of limb movements. Differences in the 2 cases are discussed as due primarily to the different sensitivities of the systems to the information

    Looking ahead: anticipatory gaze and motor ability in infancy

    Get PDF
    The present study asks when infants are able to selectively anticipate the goals of observed actions, and how this ability relates to infants' own abilities to produce those specific actions. Using eye-tracking technology to measure on-line anticipation, 6-, 8- and 10-month-old infants and a control group of adults were tested while observing an adult reach with a whole hand grasp, a precision grasp or a closed fist towards one of two different sized objects. The same infants were also given a comparable action production task. All infants showed proactive gaze to the whole hand grasps, with increased degrees of proactivity in the older groups. Gaze proactivity to the precision grasps, however, was present from 8 months of age. Moreover, the infants' ability in performing precision grasping strongly predicted their ability in using the actor's hand shape cues to differentially anticipate the goal of the observed action, even when age was partialled out. The results are discussed in terms of the specificity of action anticipation, and the fine-grained relationship between action production and action perception

    Unimanual and Bimanual Haptic Shape Discrimination

    Get PDF
    In the current study 24 younger adults and 24 older adults haptically discriminated natural 3-D shapes (bell peppers, Capsicum annuum) using unimanual (one hand used to explore two objects) and bimanual (both hands used, but each hand explored separate objects) successive exploration. Haptic exploration using just one hand requires somatosensory processing in only one cerebral hemisphere (the hemisphere contralateral to the hand being used), while bimanual haptic exploration requires somatosensory processing in both hemispheres. Previous studies related to curvature/shape perception have found either an advantage for unimanual exploration over bimanual exploration or no difference between the two conditions. In contrast to the results of previous studies that found an advantage for unimanual exploration, the current study found that unimanual and bimanual haptic exploration produced equivalent shape discrimination performance. The current results also document a significant effect of age on haptic shape discrimination: older adults exhibited moderately reduced shape discrimination performance compared to younger adults, regardless of the mode of exploration (unimanual or bimanual)
    • …
    corecore