1,138 research outputs found

    Enhancing Cross-lingual Transfer via Phonemic Transcription Integration

    Full text link
    Previous cross-lingual transfer methods are restricted to orthographic representation learning via textual scripts. This limitation hampers cross-lingual transfer and is biased towards languages sharing similar well-known scripts. To alleviate the gap between languages from different writing scripts, we propose PhoneXL, a framework incorporating phonemic transcriptions as an additional linguistic modality beyond the traditional orthographic transcriptions for cross-lingual transfer. Particularly, we propose unsupervised alignment objectives to capture (1) local one-to-one alignment between the two different modalities, (2) alignment via multi-modality contexts to leverage information from additional modalities, and (3) alignment via multilingual contexts where additional bilingual dictionaries are incorporated. We also release the first phonemic-orthographic alignment dataset on two token-level tasks (Named Entity Recognition and Part-of-Speech Tagging) among the understudied but interconnected Chinese-Japanese-Korean-Vietnamese (CJKV) languages. Our pilot study reveals phonemic transcription provides essential information beyond the orthography to enhance cross-lingual transfer and bridge the gap among CJKV languages, leading to consistent improvements on cross-lingual token-level tasks over orthographic-based multilingual PLMs.Comment: 11 pages,1 figure, 7 tables. To appear in Findings of ACL 202

    Bilingual dictionary generation and enrichment via graph exploration

    Get PDF
    In recent years, we have witnessed a steady growth of linguistic information represented and exposed as linked data on the Web. Such linguistic linked data have stimulated the development and use of openly available linguistic knowledge graphs, as is the case with the Apertium RDF, a collection of interconnected bilingual dictionaries represented and accessible through Semantic Web standards. In this work, we explore techniques that exploit the graph nature of bilingual dictionaries to automatically infer new links (translations). We build upon a cycle density based method: partitioning the graph into biconnected components for a speed-up, and simplifying the pipeline through a careful structural analysis that reduces hyperparameter tuning requirements. We also analyse the shortcomings of traditional evaluation metrics used for translation inference and propose to complement them with new ones, both-word precision (BWP) and both-word recall (BWR), aimed at being more informative of algorithmic improvements. Over twenty-seven language pairs, our algorithm produces dictionaries about 70% the size of existing Apertium RDF dictionaries at a high BWP of 85% from scratch within a minute. Human evaluation shows that 78% of the additional translations generated for dictionary enrichment are correct as well. We further describe an interesting use-case: inferring synonyms within a single language, on which our initial human-based evaluation shows an average accuracy of 84%. We release our tool as free/open-source software which can not only be applied to RDF data and Apertium dictionaries, but is also easily usable for other formats and communities.This work was partially funded by the Prêt-à-LLOD project within the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825182. This article is also based upon work from COST Action CA18209 NexusLinguarum, “European network for Web-centred linguistic data science”, supported by COST (European Cooperation in Science and Technology). It has been also partially supported by the Spanish projects TIN2016-78011-C4-3-R and PID2020-113903RB-I00 (AEI/FEDER, UE), by DGA/FEDER, and by the Agencia Estatal de Investigación of the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the “Ramón y Cajal” program (RYC2019-028112-I)

    ANNOTATED DISJUNCT FOR MACHINE TRANSLATION

    Get PDF
    Most information found in the Internet is available in English version. However, most people in the world are non-English speaker. Hence, it will be of great advantage to have reliable Machine Translation tool for those people. There are many approaches for developing Machine Translation (MT) systems, some of them are direct, rule-based/transfer, interlingua, and statistical approaches. This thesis focuses on developing an MT for less resourced languages i.e. languages that do not have available grammar formalism, parser, and corpus, such as some languages in South East Asia. The nonexistence of bilingual corpora motivates us to use direct or transfer approaches. Moreover, the unavailability of grammar formalism and parser in the target languages motivates us to develop a hybrid between direct and transfer approaches. This hybrid approach is referred as a hybrid transfer approach. This approach uses the Annotated Disjunct (ADJ) method. This method, based on Link Grammar (LG) formalism, can theoretically handle one-to-one, many-to-one, and many-to-many word(s) translations. This method consists of transfer rules module which maps source words in a source sentence (SS) into target words in correct position in a target sentence (TS). The developed transfer rules are demonstrated on English → Indonesian translation tasks. An experimental evaluation is conducted to measure the performance of the developed system over available English-Indonesian MT systems. The developed ADJ-based MT system translated simple, compound, and complex English sentences in present, present continuous, present perfect, past, past perfect, and future tenses with better precision than other systems, with the accuracy of 71.17% in Subjective Sentence Error Rate metric

    Exploring Enhanced Code-Switched Noising for Pretraining in Neural Machine Translation

    Get PDF
    Multilingual pretraining approaches in Neural Machine Translation (NMT) have shown that training models to denoise synthetic code-switched data can yield impressive performance gains --- owing to better multilingual semantic representations and transfer learning. However, they generated the synthetic code-switched data using non-contextual, one-to-one word translations obtained from lexicons - which can lead to significant noise in a variety of cases, including the poor handling of polysemes and multi-word expressions, violation of linguistic agreement and inability to scale to agglutinative languages. To overcome these limitations, we propose an approach called Contextual Code-Switching (CCS), where contextual, many-to-many word translations are generated using a `base' NMT model. We conduct experiments on 3 different language families - Romance, Uralic, and Indo-Aryan - and show significant improvements (by up to 5.5 spBLEU points) over the previous lexicon-based SOTA approaches. We also observe that small CCS models can perform comparably or better than massive models like mBART50 and mRASP2, depending on the size of data provided. We empirically analyse several key factors responsible for these - including context, many-to-many substitutions, code-switching language count etc. - and prove that they all contribute to enhanced pretraining of multilingual NMT models

    Cross-Lingual and Low-Resource Sentiment Analysis

    Get PDF
    Identifying sentiment in a low-resource language is essential for understanding opinions internationally and for responding to the urgent needs of locals affected by disaster incidents in different world regions. While tools and resources for recognizing sentiment in high-resource languages are plentiful, determining the most effective methods for achieving this task in a low-resource language which lacks annotated data is still an open research question. Most existing approaches for cross-lingual sentiment analysis to date have relied on high-resource machine translation systems, large amounts of parallel data, or resources only available for Indo-European languages. This work presents methods, resources, and strategies for identifying sentiment cross-lingually in a low-resource language. We introduce a cross-lingual sentiment model which can be trained on a high-resource language and applied directly to a low-resource language. The model offers the feature of lexicalizing the training data using a bilingual dictionary, but can perform well without any translation into the target language. Through an extensive experimental analysis, evaluated on 17 target languages, we show that the model performs well with bilingual word vectors pre-trained on an appropriate translation corpus. We compare in-genre and in-domain parallel corpora, out-of-domain parallel corpora, in-domain comparable corpora, and monolingual corpora, and show that a relatively small, in-domain parallel corpus works best as a transfer medium if it is available. We describe the conditions under which other resources and embedding generation methods are successful, and these include our strategies for leveraging in-domain comparable corpora for cross-lingual sentiment analysis. To enhance the ability of the cross-lingual model to identify sentiment in the target language, we present new feature representations for sentiment analysis that are incorporated in the cross-lingual model: bilingual sentiment embeddings that are used to create bilingual sentiment scores, and a method for updating the sentiment embeddings during training by lexicalization of the target language. This feature configuration works best for the largest number of target languages in both untargeted and targeted cross-lingual sentiment experiments. The cross-lingual model is studied further by evaluating the role of the source language, which has traditionally been assumed to be English. We build cross-lingual models using 15 source languages, including two non-European and non-Indo-European source languages: Arabic and Chinese. We show that language families play an important role in the performance of the model, as does the morphological complexity of the source language. In the last part of the work, we focus on sentiment analysis towards targets. We study Arabic as a representative morphologically complex language and develop models and morphological representation features for identifying entity targets and sentiment expressed towards them in Arabic open-domain text. Finally, we adapt our cross-lingual sentiment models for the detection of sentiment towards targets. Through cross-lingual experiments on Arabic and English, we demonstrate that our findings regarding resources, features, and language also hold true for the transfer of targeted sentiment

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation
    corecore