831 research outputs found

    A Novel Method for Solving the Fully Fuzzy Bilevel Linear Programming Problem

    Get PDF
    We address a fully fuzzy bilevel linear programming problem in which all the coefficients and variables of both objective functions and constraints are expressed as fuzzy numbers. This paper is to develop a new method to deal with the fully fuzzy bilevel linear programming problem by applying interval programming method. To this end, we first discretize membership grade of fuzzy coefficients and fuzzy decision variables of the problem into a finite number of α-level sets. By using α-level sets of fuzzy numbers, the fully fuzzy bilevel linear programming problem is transformed into an interval bilevel linear programming problem for each α-level set. The main idea to solve the obtained interval bilevel linear programming problem is to convert the problem into two deterministic subproblems which correspond to the lower and upper bounds of the upper level objective function. Based on the Kth-best algorithm, the two subproblems can be solved sequentially. Based on a series of α-level sets, we introduce a linear piecewise trapezoidal fuzzy number to approximate the optimal value of the upper level objective function of the fully fuzzy bilevel linear programming problem. Finally, a numerical example is provided to demonstrate the feasibility of the proposed approach

    Complexity of fuzzy answer set programming under Łukasiewicz semantics

    Get PDF
    Fuzzy answer set programming (FASP) is a generalization of answer set programming (ASP) in which propositions are allowed to be graded. Little is known about the computational complexity of FASP and almost no techniques are available to compute the answer sets of a FASP program. In this paper, we analyze the computational complexity of FASP under Łukasiewicz semantics. In particular we show that the complexity of the main reasoning tasks is located at the first level of the polynomial hierarchy, even for disjunctive FASP programs for which reasoning is classically located at the second level. Moreover, we show a reduction from reasoning with such FASP programs to bilevel linear programming, thus opening the door to practical applications. For definite FASP programs we can show P-membership. Surprisingly, when allowing disjunctions to occur in the body of rules – a syntactic generalization which does not affect the expressivity of ASP in the classical case – the picture changes drastically. In particular, reasoning tasks are then located at the second level of the polynomial hierarchy, while for simple FASP programs, we can only show that the unique answer set can be found in pseudo-polynomial time. Moreover, the connection to an existing open problem about integer equations suggests that the problem of fully characterizing the complexity of FASP in this more general setting is not likely to have an easy solution

    Finding Optimal Strategies in a Multi-Period Multi-Leader-Follower Stackelberg Game Using an Evolutionary Algorithm

    Full text link
    Stackelberg games are a classic example of bilevel optimization problems, which are often encountered in game theory and economics. These are complex problems with a hierarchical structure, where one optimization task is nested within the other. Despite a number of studies on handling bilevel optimization problems, these problems still remain a challenging territory, and existing methodologies are able to handle only simple problems with few variables under assumptions of continuity and differentiability. In this paper, we consider a special case of a multi-period multi-leader-follower Stackelberg competition model with non-linear cost and demand functions and discrete production variables. The model has potential applications, for instance in aircraft manufacturing industry, which is an oligopoly where a few giant firms enjoy a tremendous commitment power over the other smaller players. We solve cases with different number of leaders and followers, and show how the entrance or exit of a player affects the profits of the other players. In the presence of various model complexities, we use a computationally intensive nested evolutionary strategy to find an optimal solution for the model. The strategy is evaluated on a test-suite of bilevel problems, and it has been shown that the method is successful in handling difficult bilevel problems.Comment: To be published in Computers and Operations Researc

    Fuzzy Bilevel Optimization

    Get PDF
    In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 9

    An algorithm for solving rule sets-based bilevel decision problems

    Full text link
    Bilevel decision addresses the problem in which two levels of decision makers each tries to optimize their individual objectives under certain constraints, and to act and react in an uncooperative and sequential manner. Given the difficulty of formulating a bilevel decision problem by mathematical functions, a rule sets-based bilevel decision (RSBLD) model was proposed. This article presents an algorithm to solve a RSBLD problem. A case-based example is given to illustrate the functions of the proposed algorithm. Finally, a set of experiments is analyzed to further show the functions and the effectiveness of the proposed algorithm. © 2011 Wiley Periodicals, Inc

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    An Evolutionary Algorithm Using Duality-Base-Enumerating Scheme for Interval Linear Bilevel Programming Problems

    Get PDF
    Interval bilevel programming problem is hard to solve due to its hierarchical structure as well as the uncertainty of coefficients. This paper is focused on a class of interval linear bilevel programming problems, and an evolutionary algorithm based on duality bases is proposed. Firstly, the objective coefficients of the lower level and the right-hand-side vector are uniformly encoded as individuals, and the relative intervals are taken as the search space. Secondly, for each encoded individual, based on the duality theorem, the original problem is transformed into a single level program simply involving one nonlinear equality constraint. Further, by enumerating duality bases, this nonlinear equality is deleted, and the single level program is converted into several linear programs. Finally, each individual can be evaluated by solving these linear programs. The computational results of 7 examples show that the algorithm is feasible and robust
    corecore