44 research outputs found

    Bilattice logic of epistemic actions and knowledge

    Get PDF
    International audienceBaltag, Moss, and Solecki proposed an expansion of classical modal logic, called logic of epistemic actions and knowledge (EAK), in which one can reason about knowledge and change of knowledge. Kurz and Palmigiano showed how duality theory provides a flexible framework for modeling such epistemic changes, allowing one to develop dynamic epistemic logics on a weaker propositional basis than classical logic (for example an intuitionistic basis). In this paper we show how the techniques of Kurz and Palmigiano can be further extended to define and axiomatize a bilattice logic of epistemic actions and knowledge (BEAK). Our propositional basis is a modal expansion of the well-known four-valued logic of Belnap and Dunn, which is a system designed for handling inconsistent as well as potentially conflicting information. These features, we believe, make our framework particularly promising from a computer science perspective

    A Four-Valued Dynamic Epistemic Logic

    Get PDF
    Epistemic logic is usually employed to model two aspects of a situation: the factual and the epistemic aspects. Truth, however, is not always attainable, and in many cases we are forced to reason only with whatever information is available to us. In this paper, we will explore a four-valued epistemic logic designed to deal with these situations, where agents have only knowledge about the available information (or evidence), which can be incomplete or conflicting, but not explicitly about facts. This layer of available information or evidence, which is the object of the agents' knowledge, can be seen as a database. By adopting this sceptical posture in our semantics, we prepare the ground for logics where the notion of knowledge-or more appropriately, belief-is entirely based on evidence. The technical results include a set of reduction axioms for public announcements, correspondence proofs, and a complete tableau system. In summary, our contributions are twofold: on the one hand we present an intuition and possible application for many-valued modal logics, and on the other hand we develop a logic that models the dynamics of evidence in a simple and intuitively clear fashion

    Bilattice Public Announcement Logic

    Get PDF

    A Labelled Sequent Calculus for Public Announcement Logic

    Full text link
    Public announcement logic(PAL) is an extension of epistemic logic (EL) with some reduction axioms. In this paper, we propose a cut-free labelled sequent calculus for PAL, which is an extension of that for EL with sequent rules adapted from the reduction axioms. This calculus admits cut and allows terminating proof search

    Bilattice based Logical Reasoning for Automated Visual Surveillance and other Applications

    Get PDF
    The primary objective of an automated visual surveillance system is to observe and understand human behavior and report unusual or potentially dangerous activities/events in a timely manner. Automatically understanding human behavior from visual input, however, is a challenging task. The research presented in this thesis focuses on designing a reasoning framework that can combine, in a principled manner, high level contextual information with low level image processing primitives to interpret visual information. The primary motivation for this work has been to design a reasoning framework that draws heavily upon human like reasoning and reasons explicitly about visual as well as non-visual information to solve classification problems. Humans are adept at performing inference under uncertainty by combining evidence from multiple, noisy and often contradictory sources. This thesis describes a logical reasoning approach in which logical rules encode high level knowledge about the world and logical facts serve as input to the system from real world observations. The reasoning framework supports encoding of multiple rules for the same proposition, representing multiple lines of reasoning and also supports encoding of rules that infer explicit negation and thereby potentially contradictory information. Uncertainties are associated with both the logical rules that guide reasoning as well as with the input facts. This framework has been applied to visual surveillance problems such as human activity recognition, identity maintenance, and human detection. Finally, we have also applied it to the problem of collaborative filtering to predict movie ratings by explicitly reasoning about users preferences

    A family of graded epistemic logics

    Get PDF
    Multi-Agent Epistemic Logic has been investigated in Computer Science [5] to represent and reason about agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge and probabilities [4] and also with a fuzzy semantics have been proposed [6,13]. This paper introduces a parametric method to build graded epistemic logics inspired in the systematic method to build Multi-valued Dynamic Logics introduced in [11,12]. The parameter in both methods is the same: an action lattice [9]. This algebraic structure supports a generic space of agent knowledge operators, as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non bivalent interpretation of the assertions (as a residuated lattice)

    A family of graded epistemic logics

    Get PDF
    Multi-Agent Epistemic Logic has been investigated in Computer Science [5] to represent and reason about agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge and probabilities [4] and also with a fuzzy semantics have been proposed [6,13]. This paper introduces a parametric method to build graded epistemic logics inspired in the systematic method to build Multi-valued Dynamic Logics introduced in [11,12]. The parameter in both methods is the same: an action lattice [9]. This algebraic structure supports a generic space of agent knowledge operators, as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non bivalent interpretation of the assertions (as a residuated lattice)

    A family of graded epistemic logics

    Get PDF
    Multi-Agent Epistemic Logic has been investigated in Computer Science [Fagin, R., J. Halpern, Y. Moses and M. Vardi, “Reasoning about Knowledge,” MIT Press, USA, 1995] to represent and reason about agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge and probabilities [Fagin, R. and J. Halpern, Reasoning about knowledge and probability, Journal of the ACM 41 (1994), pp. 340–367] and also with a fuzzy semantics have been proposed [Fitting, M., Many-valued modal logics, Fundam. Inform. 15 (1991), pp. 235–254; Maruyama, Y., Reasoning about fuzzy belief and common belief: With emphasis on incomparable beliefs, in: IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011, 2011, pp. 1008–1013]. This paper introduces a parametric method to build graded epistemic logics inspired in the systematic method to build Multi-valued Dynamic Logics introduced in [Madeira, A., R. Neves and M. A. Martins, An exercise on the generation of many-valued dynamic logics, J. Log. Algebr. Meth. Program. 85 (2016), pp. 1011–1037. URL http://dx.doi.org/10.1016/j.jlamp.2016.03.004; Madeira, A., R. Neves, M. A. Martins and L. S. Barbosa, A dynamic logic for every season, in: C. Braga and N. Martí-Oliet, editors, Formal Methods: Foundations and Applications – 17th Brazilian Symposium, SBMF 2014, Maceió, AL, Brazil, September 29-October 1, 2014. Proceedings, Lecture Notes in Computer Science 8941 (2014), pp. 130–145. URL http://dx.doi.org/10.1007/978-3-319-15075-8_9]. The parameter in both methods is the same: an action lattice [Kozen, D., On action algebras, Logic and Information Flow (1994), pp. 78–88]. This algebraic structure supports a generic space of agent knowledge operators, as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non bivalent interpretation of the assertions (as a residuated lattice).publishe
    corecore