48 research outputs found

    スペクトルの線形性を考慮したハイパースペクトラル画像のノイズ除去とアンミキシングに関する研究

    Get PDF
    This study aims to generalize color line to M-dimensional spectral line feature (M>3) and introduce methods for denoising and unmixing of hyperspectral images based on the spectral linearity.For denoising, we propose a local spectral component decomposition method based on the spectral line. We first calculate the spectral line of an M-channel image, then using the line, we decompose the image into three components: a single M-channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, thus the algorithm needs to denoise only two grayscale images, regardless of the number of channels. For unmixing, we propose an algorithm that exploits the low-rank local abundance by applying the unclear norm to the abundance matrix for local regions of spatial and abundance domains. In optimization problem, the local abundance regularizer is collaborated with the L2, 1 norm and the total variation.北九州市立大

    Denoising of Hyperspectral Images Using Group Low-Rank Representation

    Get PDF
    Hyperspectral images (HSIs) have been used in a wide range of fields, such as agriculture, food safety, mineralogy and environment monitoring, but being corrupted by various kinds of noise limits its efficacy. Low-rank representation (LRR) has proved its effectiveness in the denoising of HSIs. However, it just employs local information for denoising, which results in ineffectiveness when local noise is heavy. In this paper, we propose an approach of group low-rank representation (GLRR) for the HSI denoising. In our GLRR, a corrupted HSI is divided into overlapping patches, the similar patches are combined into a group, and the group is reconstructed as a whole using LRR. The proposed method enables the exploitation of both the local similarity within a patch and the nonlocal similarity across the patches in a group simultaneously. The additional nonlocallysimilar patches can bring in extra structural information to the corrupted patches, facilitating the detection of noise as outliers. LRR is applied to the group of patches, as the uncorrupted patches enjoy intrinsic low-rank structure. The effectiveness of the proposed GLRR method is demonstrated qualitatively and quantitatively by using both simulated and real-world data in experiments

    Automatic Denoising and Unmixing in Hyperspectral Image Processing

    Get PDF
    This thesis addresses two important aspects in hyperspectral image processing: automatic hyperspectral image denoising and unmixing. The first part of this thesis is devoted to a novel automatic optimized vector bilateral filter denoising algorithm, while the remainder concerns nonnegative matrix factorization with deterministic annealing for unsupervised unmixing in remote sensing hyperspectral images. The need for automatic hyperspectral image processing has been promoted by the development of potent hyperspectral systems, with hundreds of narrow contiguous bands, spanning the visible to the long wave infrared range of the electromagnetic spectrum. Due to the large volume of raw data generated by such sensors, automatic processing in the hyperspectral images processing chain is preferred to minimize human workload and achieve optimal result. Two of the mostly researched processing for such automatic effort are: hyperspectral image denoising, which is an important preprocessing step for almost all remote sensing tasks, and unsupervised unmixing, which decomposes the pixel spectra into a collection of endmember spectral signatures and their corresponding abundance fractions. Two new methodologies are introduced in this thesis to tackle the automatic processing problems described above. Vector bilateral filtering has been shown to provide good tradeoff between noise removal and edge degradation when applied to multispectral/hyperspectral image denoising. It has also been demonstrated to provide dynamic range enhancement of bands that have impaired signal to noise ratios. Typical vector bilateral filtering usage does not employ parameters that have been determined to satisfy optimality criteria. This thesis also introduces an approach for selection of the parameters of a vector bilateral filter through an optimization procedure rather than by ad hoc means. The approach is based on posing the filtering problem as one of nonlinear estimation and minimizing the Stein\u27s unbiased risk estimate (SURE) of this nonlinear estimator. Along the way, this thesis provides a plausibility argument with an analytical example as to why vector bilateral filtering outperforms band-wise 2D bilateral filtering in enhancing SNR. Experimental results show that the optimized vector bilateral filter provides improved denoising performance on multispectral images when compared to several other approaches. Non-negative matrix factorization (NMF) technique and its extensions were developed to find part based, linear representations of non-negative multivariate data. They have been shown to provide more interpretable results with realistic non-negative constrain in unsupervised learning applications such as hyperspectral imagery unmixing, image feature extraction, and data mining. This thesis extends the NMF method by incorporating deterministic annealing optimization procedure, which will help solve the non-convexity problem in NMF and provide a better choice of sparseness constrain. The approach is based on replacing the difficult non-convex optimization problem of NMF with an easier one by adding an auxiliary convex entropy constrain term and solving this first. Experiment results with hyperspectral unmixing application show that the proposed technique provides improved unmixing performance compared to other state-of-the-art methods

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Multisource and multitemporal data fusion in remote sensing:A comprehensive review of the state of the art

    Get PDF
    The recent, sharp increase in the availability of data captured by different sensors, combined with their considerable heterogeneity, poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary data sets, however, opens up the possibility of utilizing multimodal data sets in a joint manner to further improve the performance of the processing approaches with respect to applications at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several

    A New Variational Approach Based on Proximal Deep Injection and Gradient Intensity Similarity for Spatio-Spectral Image Fusion

    Get PDF
    Pansharpening is a very debated spatio-spectral fusion problem. It refers to the fusion of a high spatial resolution panchromatic image with a lower spatial but higher spectral resolution multispectral image in order to obtain an image with high resolution in both the domains. In this article, we propose a novel variational optimization-based (VO) approach to address this issue incorporating the outcome of a deep convolutional neural network (DCNN). This solution can take advantages of both the paradigms. On one hand, higher performance can be expected introducing machine learning (ML) methods based on the training by examples philosophy into VO approaches. On other hand, the combination of VO techniques with DCNNs can aid the generalization ability of these latter. In particular, we formulate a 2\ell _2 -based proximal deep injection term to evaluate the distance between the DCNN outcome, and the desired high spatial resolution multispectral image. This represents the regularization term for our VO model. Furthermore, a new data fitting term measuring the spatial fidelity is proposed. Finally, the proposed convex VO problem is efficiently solved by exploiting the framework of the alternating direction method of multipliers (ADMM), thus guaranteeing the convergence of the algorithm. Extensive experiments both on simulated, and real datasets demonstrate that the proposed approach can outperform state-of-the-art spatio-spectral fusion methods, even showing a significant generalization ability. Please find the project page at https://liangjiandeng.github.io/Projects_Res/DMPIF_2020jstars.html

    Computational Methods for Matrix/Tensor Factorization and Deep Learning Image Denoising

    Get PDF
    Feature learning is a technique to automatically extract features from raw data. It is widely used in areas such as computer vision, image processing, data mining and natural language processing. In this thesis, we are interested in the computational aspects of feature learning. We focus on rank matrix and tensor factorization and deep neural network models for image denoising. With respect to matrix and tensor factorization, we first present a technique to speed up alternating least squares (ALS) and gradient descent (GD) − two commonly used strategies for tensor factorization. We introduce an efficient, scalable and distributed algorithm that addresses the data explosion problem. Instead of a computationally challenging sub-step of ALS and GD, we implement the algorithm on parallel machines by using only two sparse matrix-vector products. Not only is the algorithm scalable but it is also on average 4 to 10 times faster than competing algorithms on various data sets. Next, we discuss our results of non-negative matrix factorization for hyperspectral image data in the presence of noise. We introduce a spectral total variation regularization and derive four variants of the alternating direction method of multiplier algorithm. While all four methods belong to the same family of algorithms, some perform better than others. Thus, we compare the algorithms using stimulated Raman spectroscopic image will be demonstrated. For deep neural network models, we focus on its application to image denoising. We first demonstrate how an optimal procedure leveraging deep neural networks and convex optimization can combine a given set of denoisers to produce an overall better result. The proposed framework estimates the mean squared error (MSE) of individual denoised outputs using a deep neural network; optimally combines the denoised outputs via convex optimization; and recovers lost details of the combined images using another deep neural network. The framework consistently improves denoising performance for both deterministic denoisers and neural network denoisers. Next, we apply the deep neural network to solve the image reconstruction issues of the Quanta Image Sensor (QIS), which is a single-photon image sensor that oversamples the light field to generate binary measures
    corecore