479 research outputs found

    Predicting Transportation Carbon Emission with Urban Big Data

    Get PDF
    Transportation carbon emission is a significant contributor to the increase of greenhouse gases, which directly threatens the change of climate and human health. Under the pressure of the environment, it is very important to master the information of transportation carbon emission in real time. In the traditional way, we get the information of the transportation carbon emission by calculating the combustion of fossil fuel in the transportation sector. However, it is very difficult to obtain the real-time and accurate fossil fuel combustion in the transportation field. In this paper, we predict the real-time and fine-grained transportation carbon emission information in the whole city, based on the spatio-temporal datasets we observed in the city, that is taxi GPS data, transportation carbon emission data, road networks, points of interests (POIs), and meteorological data. We propose a three-layer perceptron neural network (3-layerPNN) to learn the characteristics of collected data and infer the transportation carbon emission. We evaluate our method with extensive experiments based on five real data sources obtained in Zhuhai, China. The results show that our method has advantages over the well-known three machine learning methods (Gaussian Naive Bayes, Linear Regression, and Logistic Regression) and two deep learning methods (Stacked Denoising Autoencoder and Deep Belief Networks)

    UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction

    Full text link
    Accurate Urban SpatioTemporal Prediction (USTP) is of great importance to the development and operation of the smart city. As an emerging building block, multi-sourced urban data are usually integrated as urban knowledge graphs (UrbanKGs) to provide critical knowledge for urban spatiotemporal prediction models. However, existing UrbanKGs are often tailored for specific downstream prediction tasks and are not publicly available, which limits the potential advancement. This paper presents UUKG, the unified urban knowledge graph dataset for knowledge-enhanced urban spatiotemporal predictions. Specifically, we first construct UrbanKGs consisting of millions of triplets for two metropolises by connecting heterogeneous urban entities such as administrative boroughs, POIs, and road segments. Moreover, we conduct qualitative and quantitative analysis on constructed UrbanKGs and uncover diverse high-order structural patterns, such as hierarchies and cycles, that can be leveraged to benefit downstream USTP tasks. To validate and facilitate the use of UrbanKGs, we implement and evaluate 15 KG embedding methods on the KG completion task and integrate the learned KG embeddings into 9 spatiotemporal models for five different USTP tasks. The extensive experimental results not only provide benchmarks of knowledge-enhanced USTP models under different task settings but also highlight the potential of state-of-the-art high-order structure-aware UrbanKG embedding methods. We hope the proposed UUKG fosters research on urban knowledge graphs and broad smart city applications. The dataset and source code are available at https://github.com/usail-hkust/UUKG/.Comment: NeurIPS 2023 Track on Datasets and Benchmark

    Urban IoT ontologies for sharing and electric mobility

    Get PDF
    Cities worldwide are facing the challenge of digital information governance: different and competing service providers operating Internet of Things (IoT) devices often produce and maintain large amounts of data related to the urban environment. As a consequence, the need for interoperability arises between heterogeneous and distributed information, to enable city councils to make data-driven decisions and to provide new and effective added value services to their citizens. In this paper, we present the Urban IoT suite of ontologies, a common conceptual model to harmonise the data exchanges between municipalities and service providers, with specific focus on the sharing mobility and electric mobility domains
    • …
    corecore