292 research outputs found

    Bijective enumeration of some colored permutations given by the product of two long cycles

    Get PDF
    Let γn\gamma_n be the permutation on nn symbols defined by $\gamma_n = (1\ 2\...\ n).Weareinterestedinanenumerativeproblemoncoloredpermutations,thatispermutations. We are interested in an enumerative problem on colored permutations, that is permutations \betaof of ninwhichthenumbersfrom1to in which the numbers from 1 to narecoloredwith are colored with pcolorssuchthattwoelementsinasamecyclehavethesamecolor.Weshowthattheproportionofcoloredpermutationssuchthat colors such that two elements in a same cycle have the same color. We show that the proportion of colored permutations such that \gamma_n \beta^{-1}isalongcycleisgivenbytheverysimpleratio is a long cycle is given by the very simple ratio \frac{1}{n- p+1}.Ourproofisbijectiveandusescombinatorialobjectssuchaspartitionedhypermapsandthorntrees.Thisformulaisactuallyequivalenttotheproportionalityofthenumberoflongcycles. Our proof is bijective and uses combinatorial objects such as partitioned hypermaps and thorn trees. This formula is actually equivalent to the proportionality of the number of long cycles \alphasuchthat such that \gamma_n\alphahas has mcyclesandStirlingnumbersofsize cycles and Stirling numbers of size n+1$, an unexpected connection previously found by several authors by means of algebraic methods. Moreover, our bijection allows us to refine the latter result with the cycle type of the permutations.Comment: 22 pages. Version 1 is a short version of 12 pages, entitled "Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result", published in DMTCS proceedings of FPSAC 2010, AN, 713-72

    Bijective Enumeration of 3-Factorizations of an N-Cycle

    Full text link
    This paper is dedicated to the factorizations of the symmetric group. Introducing a new bijection for partitioned 3-cacti, we derive an el- egant formula for the number of factorizations of a long cycle into a product of three permutations. As the most salient aspect, our construction provides the first purely combinatorial computation of this number

    A simple model of trees for unicellular maps

    Get PDF
    We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the "recursive part" of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and the Goupil-Schaeffer formula. We also discuss several applications of our construction: we obtain a new proof of an identity related to covered maps due to Bernardi and the first author, and thanks to previous work of the second author, we give a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Finally, we show that our techniques apply partially to unicellular 3-constellations and to related objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a refinement by degree of the Harer-Zagier formula and more details in some proof

    Separation probabilities for products of permutations

    Get PDF
    We study the mixing properties of permutations obtained as a product of two uniformly random permutations of fixed cycle types. For instance, we give an exact formula for the probability that elements 1,2,...,k1,2,...,k are in distinct cycles of the random permutation of {1,2,...,n}\{1,2,...,n\} obtained as product of two uniformly random nn-cycles

    Tridiagonalized GUE matrices are a matrix model for labeled mobiles

    Full text link
    It is well-known that the number of planar maps with prescribed vertex degree distribution and suitable labeling can be represented as the leading coefficient of the 1N\frac{1}{N}-expansion of a joint cumulant of traces of powers of an NN-by-NN GUE matrix. Here we undertake the calculation of this leading coefficient in a different way. Firstly, we tridiagonalize the GUE matrix in the manner of Trotter and Dumitriu-Edelman and then alter it by conjugation to make the subdiagonal identically equal to 11. Secondly, we apply the cluster expansion technique (specifically, the Brydges-Kennedy-Abdesselam-Rivasseau formula) from rigorous statistical mechanics. Thirdly, by sorting through the terms of the expansion thus generated we arrive at an alternate interpretation for the leading coefficient related to factorizations of the long cycle (12⋯n)∈Sn(12\cdots n)\in S_n. Finally, we reconcile the group-theoretical objects emerging from our calculation with the labeled mobiles of Bouttier-Di Francesco-Guitter.Comment: 42 pages, LaTeX, 17 figures. The present paper completely supercedes arXiv1203.3185 in terms of methods but addresses a different proble

    Bijections and symmetries for the factorizations of the long cycle

    Full text link
    We study the factorizations of the permutation (1,2,...,n)(1,2,...,n) into kk factors of given cycle types. Using representation theory, Jackson obtained for each kk an elegant formula for counting these factorizations according to the number of cycles of each factor. In the cases k=2,3k=2,3 Schaeffer and Vassilieva gave a combinatorial proof of Jackson's formula, and Morales and Vassilieva obtained more refined formulas exhibiting a surprising symmetry property. These counting results are indicative of a rich combinatorial theory which has remained elusive to this point, and it is the goal of this article to establish a series of bijections which unveil some of the combinatorial properties of the factorizations of (1,2,...,n)(1,2,...,n) into kk factors for all kk. We thereby obtain refinements of Jackson's formulas which extend the cases k=2,3k=2,3 treated by Morales and Vassilieva. Our bijections are described in terms of "constellations", which are graphs embedded in surfaces encoding the transitive factorizations of permutations
    • …
    corecore