187 research outputs found

    Landmark-Matching Transformation with Large Deformation Via n-dimensional Quasi-conformal Maps

    Get PDF
    We propose a new method to obtain landmark-matching transformations between n-dimensional Euclidean spaces with large deformations. Given a set of feature correspondences, our algorithm searches for an optimal folding-free mapping that satisfies the prescribed landmark constraints. The standard conformality distortion defined for mappings between 2-dimensional spaces is first generalized to the n-dimensional conformality distortion K(f) for a mapping f between n-dimensional Euclidean spaces (n ≥ 3). We then propose a variational model involving K(f) to tackle the landmark-matching problem in higher dimensional spaces. The generalized conformality term K(f) enforces the bijectivity of the optimized mapping and minimizes its local geometric distortions even with large deformations. Another challenge is the high computational cost of the proposed model. To tackle this, we have also proposed a numerical method to solve the optimization problem more efficiently. Alternating direction method with multiplier is applied to split the optimization problem into two subproblems. Preconditioned conjugate gradient method with multi-grid preconditioner is applied to solve one of the sub-problems, while a fixed-point iteration is proposed to solve another subproblem. Experiments have been carried out on both synthetic examples and lung CT images to compute the diffeomorphic landmark-matching transformation with different landmark constraints. Results show the efficacy of our proposed model to obtain a folding-free landmark-matching transformation between n-dimensional spaces with large deformations

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    Regularized Surface and Point Landmarks Based Efficient Non-Rigid Medical Image Registration

    Get PDF
    Medical image registration is one of the fundamental tasks in medical image processing. It has various applications in field of image guided surgery (IGS) and computer assisted diagnosis (CAD). A set of non-linear methods have been already developed for inter-subject and intra-subject 3D medical image registration. However, efficient registration in terms of accuracy and speed is one of the most demanded of today surgical navigation (SN) systems. This paper is a result of a series of experiments which utilizes Fast Radial Basis Function (RBF) technique to register one or more medical images non-rigidly. Initially, a set of curves are extracted using a combined watershed and active contours algorithm and then tiled and converted to a regular surface using a global parameterization algorithm. It is shown that the registration accuracy improves when higher number of salient features (i.e. anatomical point landmarks and surfaces) are used and it also has no impact on the speed of the algorithm. The results show that the target registration error is less than 2 mm and has sub-second performance on intra-subject registration of MR image real datasets. It is observed that the Fast RBF algorithm is relatively insensitive to the increasing number of point landmarks used as compared with the competing feature based algorithms

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor

    Fitting Skeletal Object Models Using Spherical Harmonics Based Template Warping

    Get PDF
    We present a scheme that propagates a reference skeletal model (s-rep) into a particular case of an object, thereby propagating the initial shape-related layout of the skeleton-to-boundary vectors, called spokes. The scheme represents the surfaces of the template as well as the target objects by spherical harmonics and computes a warp between these via a thin plate spline. To form the propagated s-rep, it applies the warp to the spokes of the template s-rep and then statistically refines. This automatic approach promises to make s-rep fitting robust for complicated objects, which allows s-rep based statistics to be available to all. The improvement in fitting and statistics is significant compared with the previous methods and in statistics compared with a state-of-the-art boundary based method

    A Perfect Match Condition for Point-Set Matching Problems Using the Optimal Mass Transport Approach

    Get PDF
    We study the performance of optimal mass transport--based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the nonrigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport--based approach.Read More: http://epubs.siam.org/doi/abs/10.1137/12086443
    • …
    corecore