70 research outputs found

    Planar maps as labeled mobiles

    Full text link
    We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, to obtain a bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.Comment: 31 pages, 17 figures, tex, lanlmac, epsf; improved tex

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    A note on irreducible maps with several boundaries

    Get PDF
    We derive a formula for the generating function of d-irreducible bipartite planar maps with several boundaries, i.e. having several marked faces of controlled degrees. It extends a formula due to Collet and Fusy for the case of arbitrary (non necessarily irreducible) bipartite planar maps, which we recover by taking d=0. As an application, we obtain an expression for the number of d-irreducible bipartite planar maps with a prescribed number of faces of each allowed degree. Very explicit expressions are given in the case of maps without multiple edges (d=2), 4-irreducible maps and maps of girth at least 6 (d=4). Our derivation is based on a tree interpretation of the various encountered generating functions.Comment: 18 pages, 8 figure

    Unified bijections for maps with prescribed degrees and girth

    Full text link
    This article presents unified bijective constructions for planar maps, with control on the face degrees and on the girth. Recall that the girth is the length of the smallest cycle, so that maps of girth at least d=1,2,3d=1,2,3 are respectively the general, loopless, and simple maps. For each positive integer dd, we obtain a bijection for the class of plane maps (maps with one distinguished root-face) of girth dd having a root-face of degree dd. We then obtain more general bijective constructions for annular maps (maps with two distinguished root-faces) of girth at least dd. Our bijections associate to each map a decorated plane tree, and non-root faces of degree kk of the map correspond to vertices of degree kk of the tree. As special cases we recover several known bijections for bipartite maps, loopless triangulations, simple triangulations, simple quadrangulations, etc. Our work unifies and greatly extends these bijective constructions. In terms of counting, we obtain for each integer dd an expression for the generating function Fd(xd,xd+1,xd+2,...)F_d(x_d,x_{d+1},x_{d+2},...) of plane maps of girth dd with root-face of degree dd, where the variable xkx_k counts the non-root faces of degree kk. The expression for F1F_1 was already obtained bijectively by Bouttier, Di Francesco and Guitter, but for d≥2d\geq 2 the expression of FdF_d is new. We also obtain an expression for the generating function \G_{p,q}^{(d,e)}(x_d,x_{d+1},...) of annular maps with root-faces of degrees pp and qq, such that cycles separating the two root-faces have length at least ee while other cycles have length at least dd. Our strategy is to obtain all the bijections as specializations of a single "master bijection" introduced by the authors in a previous article. In order to use this approach, we exhibit certain "canonical orientations" characterizing maps with prescribed girth constraints

    Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof

    Full text link
    We consider the problem of enumeration of planar maps and revisit its one-matrix model solution in the light of recent combinatorial techniques involving conjugated trees. We adapt and generalize these techniques so as to give an alternative and purely combinatorial solution to the problem of counting arbitrary planar maps with prescribed vertex degrees.Comment: 29 pages, 14 figures, tex, harvmac, eps

    Matrix integrals and enumeration of maps

    Full text link
    This chapter is an introduction to the connection between random matrices and maps, i.e graphs drawn on surfaces. We concentrate on the one-matrix model and explain how it encodes and allows to solve a map enumeration problem.Comment: chapter of the "The Oxford Handbook of Random Matrix Theory", editors G. Akemann, J. Baik and P. Di Francesco ; 24 pages and 5 figure

    A simple formula for the series of constellations and quasi-constellations with boundaries

    Full text link
    We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. The formula naturally extends to pp-constellations and quasi-pp-constellations with boundaries (the case p=2p=2 corresponding to bipartite maps).Comment: 23 pages, full paper version of v1, with results extended to constellations and quasi constellation

    Maps and trees

    Get PDF
    We present bijective proofs for the enumeration of planar maps and non-separable planar maps, and apply the same method to rederive the enumeration formula for self-dual maps

    Unified bijections for planar hypermaps with general cycle-length constraints

    Full text link
    We present a general bijective approach to planar hypermaps with two main results. First we obtain unified bijections for all classes of maps or hypermaps defined by face-degree constraints and girth constraints. To any such class we associate bijectively a class of plane trees characterized by local constraints. This unifies and greatly generalizes several bijections for maps and hypermaps. Second, we present yet another level of generalization of the bijective approach by considering classes of maps with non-uniform girth constraints. More precisely, we consider "well-charged maps", which are maps with an assignment of "charges" (real numbers) on vertices and faces, with the constraints that the length of any cycle of the map is at least equal to the sum of the charges of the vertices and faces enclosed by the cycle. We obtain a bijection between charged hypermaps and a class of plane trees characterized by local constraints
    • …
    corecore