81 research outputs found

    GRAPHiQL: A graph intuitive query language for relational databases

    Get PDF
    Graph analytics is becoming increasingly popular, driving many important business applications from social network analysis to machine learning. Since most graph data is collected in a relational database, it seems natural to attempt to perform graph analytics within the relational environment. However, SQL, the query language for relational databases, makes it difficult to express graph analytics operations. This is because SQL requires programmers to think in terms of tables and joins, rather than the more natural representation of graphs as collections of nodes and edges. As a result, even relatively simple graph operations can require very complex SQL queries. In this paper, we present GRAPHiQL, an intuitive query language for graph analytics, which allows developers to reason in terms of nodes and edges. GRAPHiQL provides key graph constructs such as looping, recursion, and neighborhood operations. At runtime, GRAPHiQL compiles graph programs into efficient SQL queries that can run on any relational database. We demonstrate the applicability of GRAPHiQL on several applications and compare the performance of GRAPHiQL queries with those of Apache Giraph (a popular `vertex centric' graph programming language)

    Recursive Rules with Aggregation: A Simple Unified Semantics

    Full text link
    Complex reasoning problems are most clearly and easily specified using logical rules, especially recursive rules with aggregation such as counts and sums for practical applications. Unfortunately, the meaning of such rules has been a significant challenge, leading to many different conflicting semantics. This paper describes a unified semantics for recursive rules with aggregation, extending the unified founded semantics and constraint semantics for recursive rules with negation. The key idea is to support simple expression of the different assumptions underlying different semantics, and orthogonally interpret aggregation operations straightforwardly using their simple usual meaning

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF
    • …
    corecore