250 research outputs found

    Towards a European Collaborative Data Infrastructure

    Get PDF
    The EUDAT project is a pan-European data initiative that started in October 2011. The project brings together a unique consortium of 25 partners - including research communities, national data and high performance computing (HPC) centres, technology providers, and funding agencies - from 13 countries. EUDAT aims to build a sustainable cross-disciplinary and cross-national data infrastructure that provides a set of shared services for accessing and preserving research data. The design and deployment of these services is being coordinated by multi-disciplinary task forces comprising representatives from research communities and data centres. This short paper presents the achievements of the project during its first year and describes the services that have been chosen to meet the requirements of the initial research communities involved in the project.CSC — IT Center for Science Ltd., FI-02101 Espoo, Finland, SARA, Science Park 140, 1098 XG Amsterdam, The Netherlands, Max Planck Institute for Psycholinguistics, PO Box 310, 6500 AH Nijmegen, The Netherlands

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society. The European Open Science Cloud (EOSC) initiative is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications and store, share and reuse research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. To meet those resource demands, computing paradigms such as High-Performance Computing (HPC) and Cloud Computing are applied to e-science applications. However, adapting applications and services to these paradigms is a challenging task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a general barrier to its uptake by scientists. In this context, EOSC-Synergy, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC’s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-Synergy to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services can be transferred to new services for the adoption of the EOSC ecosystem framework. The article made several recommendations for the integration of thematic services in the EOSC ecosystem regarding Authentication and Authorization (federated regional or thematic solutions based on EduGAIN mainly), FAIR data and metadata preservation solutions (both at cataloguing and data preservation—such as EUDAT’s B2SHARE), cloud platform-agnostic resource management services (such as Infrastructure Manager) and workload management solutions.This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857647, EOSC-Synergy, European Open Science Cloud - Expanding Capacities by building Capabilities. Moreover, this work is partially funded by grant No 2015/24461-2, São Paulo Research Foundation (FAPESP). Francisco Brasileiro is a CNPq/Brazil researcher (grant 308027/2020-5).Peer Reviewed"Article signat per 20 autors/es: Amanda Calatrava, Hernán Asorey, Jan Astalos, Alberto Azevedo, Francesco Benincasa, Ignacio Blanquer, Martin Bobak, Francisco Brasileiro, Laia Codó, Laura del Cano, Borja Esteban, Meritxell Ferret, Josef Handl, Tobias Kerzenmacher, Valentin Kozlov, Aleš Křenek, Ricardo Martins, Manuel Pavesio, Antonio Juan Rubio-Montero, Juan Sánchez-Ferrero "Postprint (published version

    Building a Disciplinary, World-Wide Data Infrastructure

    Full text link
    Sharing scientific data, with the objective of making it fully discoverable, accessible, assessable, intelligible, usable, and interoperable, requires work at the disciplinary level to define in particular how the data should be formatted and described. Each discipline has its own organization and history as a starting point, and this paper explores the way a range of disciplines, namely materials science, crystallography, astronomy, earth sciences, humanities and linguistics get organized at the international level to tackle this question. In each case, the disciplinary culture with respect to data sharing, science drivers, organization and lessons learnt are briefly described, as well as the elements of the specific data infrastructure which are or could be shared with others. Commonalities and differences are assessed. Common key elements for success are identified: data sharing should be science driven; defining the disciplinary part of the interdisciplinary standards is mandatory but challenging; sharing of applications should accompany data sharing. Incentives such as journal and funding agency requirements are also similar. For all, it also appears that social aspects are more challenging than technological ones. Governance is more diverse, and linked to the discipline organization. CODATA, the RDA and the WDS can facilitate the establishment of disciplinary interoperability frameworks. Being problem-driven is also a key factor of success for building bridges to enable interdisciplinary research.Comment: Proceedings of the session "Building a disciplinary, world-wide data infrastructure" of SciDataCon 2016, held in Denver, CO, USA, 12-14 September 2016, to be published in ICSU CODATA Data Science Journal in 201

    Implementing the institutional data repository IST DataRep

    Get PDF
    In this report the implementation of the institutional data repository IST DataRep at IST Austria will be covered: Starting with the research phase when requirements for a repository were established, the procedure of choosing a repository-software and its customization based on the results of user-testings will be discussed. Followed by reflections on the marketing strategies in regard of impact, and at the end sharing some experiences of one year operating IST DataRep

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society as a whole. The initiative known as the European Open Science Cloud (EOSC) is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications, and to store, share and re-use research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. Computing paradigms such as High Performance Computing (HPC) and Cloud Computing are applied to e-science applications to meet these demands. However, adapting applications and services to these paradigms is not a trivial task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a barrier for its uptake by scientists in general. In this context, EOSC-SYNERGY, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC\u27s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-SYNERGY to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services could be transferred to new services for the adoption of the EOSC ecosystem framework

    European HPC Landscape

    Get PDF
    This paper provides an overview on the European HPC landscape supported by a survey, designed by the PRACE-5IP project, accessing more than 50 of the most influential stakeholders of HPC in Europe. It focuses at Tier-0 systems on the European level providing high-end computing and data analysis resources. The different actors are presented and their provided services are analyzed in order to identify overlaps and gaps, complementarity and opportunities for collaborations. A new pan-European HPC portal is proposed in order to get all information on one place and facilitate access to the portfolio of services offered by the European HPC communities
    corecore