20 research outputs found

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    Forschungsbericht / Hochschule Mittweida

    Get PDF

    Wave Interactions with Coastal Structures

    Get PDF
    Due to the ongoing rise in sea level and increases in extreme wave climates, which consequently change the wave climate, coastal structures such as sea dikes and seawalls are exposed to severe and frequent sea storms. Even though much research related to wave–structure interactions has been carried out, it remains one of the most important and challenging topics in the field of coastal engineering. The recent publications in the Special Issue “Wave Interactions with Coastal Structures” in the Journal of Marine Science and Engineering include a wide range of research, including theoretical/mathematical, experimental, and numerical work related to the interaction between sea waves and coastal structures. These publications address conventional coastal hard structures in deep water zones as well as those located in shallow water zones, such as wave overtopping over shallow foreshores with apartment buildings on dikes. The research findings presented help to improve our knowledge of hydrodynamic processes, and the new approaches and developments presented here will be good benchmarks for future work

    Rejection and online learning with prototype-based classifiers in adaptive metrical spaces

    Get PDF
    Fischer L. Rejection and online learning with prototype-based classifiers in adaptive metrical spaces. Bielefeld: Universität Bielefeld; 2016.The rising amount of digital data, which is available in almost every domain, causes the need for intelligent, automated data processing. Classification models constitute particularly popular techniques from the machine learning domain with applications ranging from fraud detection up to advanced image classification tasks. Within this thesis, we will focus on so-called prototype-based classifiers as one prominent family of classifiers, since they offer a simple classification scheme, interpretability of the model in terms of prototypes, and good generalisation performance. We will face a few crucial questions which arise whenever such classifiers are used in real-life scenarios which require robustness and reliability of classification and the ability to deal with complex and possibly streaming data sets. Particularly, we will address the following problems: - Deterministic prototype-based classifiers deliver a class label, but no confidence of the classification. The latter is particularly relevant whenever the costs of an error are higher than the costs to reject an example, e.g. in a safety critical system. We investigate ways to enhance prototype-based classifiers by a certainty measure which can efficiently be computed based on the given classifier only and which can be used to reject an unclear classification. - For an efficient rejection, the choice of a suitable threshold is crucial. We investigate in which situations the performance of local rejection can surpass the choice of only a global one, and we propose efficient schemes how to optimally compute local thresholds on a given training set. - For complex data and lifelong learning, the required classifier complexity can be unknown a priori. We propose an efficient, incremental scheme which adjusts the model complexity of a prototype-based classifier based on the certainty of the classification. Thereby, we put particular emphasis on the question how to adjust prototype locations and metric parameters, and how to insert and/or delete prototypes in an efficient way. - As an alternative to the previous solution, we investigate a hybrid architecture which combines an offline classifier with an online classifier based on their certainty values, thus directly addressing the stability/plasticity dilemma. While this is straightforward for classical prototype-based schemes, it poses some challenges as soon as metric learning is integrated into the scheme due to the different inherent data representations. - Finally, we investigate the performance of the proposed hybrid prototype-based classifier within a realistic visual road-terrain-detection scenario

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    In many engineering domains, systems are composed of partially independent subsystems—power systems are composed of distribution and transmission systems, teams of robots are composed of individual robots, and chemical process systems are composed of vessels, heat exchangers and reactors. Often, these subsystems should reach a common goal such as satisfying a power demand with minimum cost, flying in a formation, or reaching an optimal set-point. At the same time, limited information exchange is desirable—for confidentiality reasons but also due to communication constraints. Moreover, a fast and reliable decision process is key as applications might be safety-critical. Mathematical optimization techniques are among the most successful tools for controlling systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization control the subsystems in a distributed or decentralized fashion, reducing or avoiding central coordination. These methods have a long and successful history. Classical distributed optimization algorithms, however, are typically designed for convex problems. Hence, they are only partially applicable in the above domains since many of them lead to optimization problems with non-convex constraints. This thesis develops one of the first frameworks for distributed and decentralized optimization with non-convex constraints. Based on the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-level distributed ALADIN framework is presented, solving the coordination step of ALADIN in a decentralized fashion. This framework can handle various decentralized inner algorithms, two of which we develop here: a decentralized variant of the Alternating Direction Method of Multipliers (ADMM) and a novel decentralized Conjugate Gradient algorithm. Decentralized conjugate gradient is to the best of our knowledge the first decentralized algorithm with a guarantee of convergence to the exact solution in a finite number of iterates. Sufficient conditions for fast local convergence of bi-level ALADIN are derived. Bi-level ALADIN strongly reduces the communication and coordination effort of ALADIN and preserves its fast convergence guarantees. We illustrate these properties on challenging problems from power systems and control, and compare performance to the widely used ADMM. The developed methods are implemented in the open-source MATLAB toolbox ALADIN-—one of the first toolboxes for decentralized non-convex optimization. ALADIN- comes with a rich set of application examples from different domains showing its broad applicability. As an additional contribution, this thesis provides new insights why state-of-the-art distributed algorithms might encounter issues for constrained problems
    corecore