40,189 research outputs found

    Data mining and predictive analytics application on cellular networks to monitor and optimize quality of service and customer experience

    Get PDF
    This research study focuses on the application models of Data Mining and Machine Learning covering cellular network traffic, in the objective to arm Mobile Network Operators with full view of performance branches (Services, Device, Subscribers). The purpose is to optimize and minimize the time to detect service and subscriber patterns behaviour. Different data mining techniques and predictive algorithms have been applied on real cellular network datasets to uncover different data usage patterns using specific Key Performance Indicators (KPIs) and Key Quality Indicators (KQI). The following tools will be used to develop the concept: RStudio for Machine Learning and process visualization, Apache Spark, SparkSQL for data and big data processing and clicData for service Visualization. Two use cases have been studied during this research. In the first study, the process of Data and predictive Analytics are fully applied in the field of Telecommunications to efficiently address users’ experience, in the goal of increasing customer loyalty and decreasing churn or customer attrition. Using real cellular network transactions, prediction analytics are used to predict customers who are likely to churn, which can result in revenue loss. Prediction algorithms and models including Classification Tree, Random Forest, Neural Networks and Gradient boosting have been used with an exploratory Data Analysis, determining relationship between predicting variables. The data is segmented in to two, a training set to train the model and a testing set to test the model. The evaluation of the best performing model is based on the prediction accuracy, sensitivity, specificity and the Confusion Matrix on the test set. The second use case analyses Service Quality Management using modern data mining techniques and the advantages of in-memory big data processing with Apache Spark and SparkSQL to save cost on tool investment; thus, a low-cost Service Quality Management model is proposed and analyzed. With increase in Smart phone adoption, access to mobile internet services, applications such as streaming, interactive chats require a certain service level to ensure customer satisfaction. As a result, an SQM framework is developed with Service Quality Index (SQI) and Key Performance Index (KPI). The research concludes with recommendations and future studies around modern technology applications in Telecommunications including Internet of Things (IoT), Cloud and recommender systems.Cellular networks have evolved and are still evolving, from traditional GSM (Global System for Mobile Communication) Circuit switched which only supported voice services and extremely low data rate, to LTE all Packet networks accommodating high speed data used for various service applications such as video streaming, video conferencing, heavy torrent download; and for say in a near future the roll-out of the Fifth generation (5G) cellular networks, intended to support complex technologies such as IoT (Internet of Things), High Definition video streaming and projected to cater massive amount of data. With high demand on network services and easy access to mobile phones, billions of transactions are performed by subscribers. The transactions appear in the form of SMSs, Handovers, voice calls, web browsing activities, video and audio streaming, heavy downloads and uploads. Nevertheless, the stormy growth in data traffic and the high requirements of new services introduce bigger challenges to Mobile Network Operators (NMOs) in analysing the big data traffic flowing in the network. Therefore, Quality of Service (QoS) and Quality of Experience (QoE) turn in to a challenge. Inefficiency in mining, analysing data and applying predictive intelligence on network traffic can produce high rate of unhappy customers or subscribers, loss on revenue and negative services’ perspective. Researchers and Service Providers are investing in Data mining, Machine Learning and AI (Artificial Intelligence) methods to manage services and experience. This research study focuses on the application models of Data Mining and Machine Learning covering network traffic, in the objective to arm Mobile Network Operators with full view of performance branches (Services, Device, Subscribers). The purpose is to optimize and minimize the time to detect service and subscriber patterns behaviour. Different data mining techniques and predictive algorithms will be applied on cellular network datasets to uncover different data usage patterns using specific Key Performance Indicators (KPIs) and Key Quality Indicators (KQI). The following tools will be used to develop the concept: R-Studio for Machine Learning, Apache Spark, SparkSQL for data processing and clicData for Visualization.Electrical and Mining EngineeringM. Tech (Electrical Engineering

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Big Data Caching for Networking: Moving from Cloud to Edge

    Full text link
    In order to cope with the relentless data tsunami in 5G5G wireless networks, current approaches such as acquiring new spectrum, deploying more base stations (BSs) and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost and flexibility. In this regard, context-aware 55G networks with edge/cloud computing and exploitation of \emph{big data} analytics can yield significant gains to mobile operators. In this article, proactive content caching in 55G wireless networks is investigated in which a big data-enabled architecture is proposed. In this practical architecture, vast amount of data is harnessed for content popularity estimation and strategic contents are cached at the BSs to achieve higher users' satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours of mobile data traffic is collected from a major telecom operator in Turkey and a big data-enabled analysis is carried out leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved both in terms of users' satisfaction and backhaul offloading. For example, in the case of 1616 BSs with 30%30\% of content ratings and 1313 Gbyte of storage size (78%78\% of total library size), proactive caching yields 100%100\% of users' satisfaction and offloads 98%98\% of the backhaul.Comment: accepted for publication in IEEE Communications Magazine, Special Issue on Communications, Caching, and Computing for Content-Centric Mobile Network

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin
    • …
    corecore