84,468 research outputs found

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Matching model of flow table for networked big data

    Full text link
    Networking for big data has to be intelligent because it will adjust data transmission requirements adaptively during data splitting and merging. Software-defined networking (SDN) provides a workable and practical paradigm for designing more efficient and flexible networks. Matching strategy in the flow table of SDN switches is most crucial. In this paper, we use a classification approach to analyze the structure of packets based on the tuple-space lookup mechanism, and propose a matching model of the flow table in SDN switches by classifying packets based on a set of fields, which is called an F-OpenFlow. The experiment results show that the proposed F-OpenFlow effectively improves the utilization rate and matching efficiency of the flow table in SDN switches for networked big data.Comment: 14 pages, 6 figures, 2 table

    A Mathematical Theory of Big Data

    Get PDF
    This article presents a cardinality approach to big data, a fuzzy logicbased approach to big data, a similarity-based approach to big data, and a logical approach to the marketing strategy of social networking services. All these together constitute a mathematical theory of big data. This article also examines databases with infinite attributes. The research results reveal that relativity and infinity are two characteristics of big data. The relativity of big data is based on the theory of fuzzy sets. The relativity of big data leads to the continuum from small data to big data, big data-driven small data analytics to become statistical significance. The infinity of big data is based on the calculus and cardinality theory. The infinity of big data leads to the infinite similarity of big data. The proposed theory in this article might facilitate the mathematical research and development of big data, big data analytics, big data computing, and data science with applications in intelligent business analytics and business intelligence

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    Cyber-Physical Systems Technologies: Applications in Industry and Education

    Get PDF
    Industry 4.0 concept development forms new trends as cloud computing,  big data analysis, the industrial internet of things, machine-to-machine technologies. Cyber-physical systems (CPS) paradigm is based on these trends and integrates of computation, networking and physical processes. Synergy Center at Peter the Great St. Petersburg Polytechnic University works in the areas of intelligent systems for data processing and control, motion control systems for robotics, complex automation and mechatronics as components of CPS. Keywords: Industry 4.0, Cyber-physical systems, Digital twin; intelligent control system, automation, Global digitalisation, Practical-oriented online courses, Skills training, Joint international educational programmes

    Smart Cities for Real People

    Get PDF
    Accelerating urbanization of the population and the emergence of new smart sensors (the Internet of Things) are combining in the phenomenon of the smart city. This movement is leading to improved quality of life and public safety, helping cities to enjoy economies that help remedy some budget overruns, better health care, and is resulting in increased productivity. The following report summarizes evolving digital technology trends, including smart phone applications, mapping software, big data and sensor miniaturization and broadband networking, that combine to create a technology toolkit available to smart city developers, managers and citizens. As noted above, the benefits of the smart city are already evident in some key areas as the technology sees actual implementation, 30 years after the creation of the broadband cable modem. The challenges of urbanization require urgent action and intelligent strategies. The applications and tools that truly benefit the people who live in cities will depend not on just the tools, but their intelligent application given current systemic obstacles, some of which are highlighted in the article. Of course, all the emerging technologies mentioned are dependent on ubiquitous, economical, reliable, safe and secure networks (wired and wireless) and network service providers
    • …
    corecore