1,892 research outputs found

    Exploiting satellite SAR for archaeological prospection and heritage site protection

    Get PDF
    Optical and Synthetic Aperture Radar (SAR) remote sensing has a long history of use and reached a good level of maturity in archaeological and cultural heritage applications, yet further advances are viable through the exploitation of novel sensor data and imaging modes, big data and high-performance computing, advanced and automated analysis methods. This paper showcases the main research avenues in this field, with a focus on archaeological prospection and heritage site protection. Six demonstration use-cases with a wealth of heritage asset types (e.g. excavated and still buried archaeological features, standing monuments, natural reserves, burial mounds, paleo-channels) and respective scientific research objectives are presented: the Ostia-Portus area and the wider Province of Rome (Italy), the city of Wuhan and the Jiuzhaigou National Park (China), and the Siberian “Valley of the Kings” (Russia). Input data encompass both archive and newly tasked medium to very high-resolution imagery acquired over the last decade from satellite (e.g. Copernicus Sentinels and ESA Third Party Missions) and aerial (e.g. Unmanned Aerial Vehicles, UAV) platforms, as well as field-based evidence and ground truth, auxiliary topographic data, Digital Elevation Models (DEM), and monitoring data from geodetic campaigns and networks. The novel results achieved for the use-cases contribute to the discussion on the advantages and limitations of optical and SAR-based archaeological and heritage applications aimed to detect buried and sub-surface archaeological assets across rural and semi-vegetated landscapes, identify threats to cultural heritage assets due to ground instability and urban development in large metropolises, and monitor post-disaster impacts in natural reserves

    Urban sprawl and its impact on sustainable urban development: a combination of remote sensing and social media data

    Get PDF
    Urbanization is one of the most impactful human activities across the world today affecting the quality of urban life and its sustainable development. Urbanization in Africa is occurring at an unprecedented rate and it threatens the attainment of Sustainable Development Goals (SDGs). Urban sprawl has resulted in unsustainable urban development patterns from social, environmental, and economic perspectives. This study is among the first examples of research in Africa to combine remote sensing data with social media data to determine urban sprawl from 2011 to 2017 in Morogoro urban municipality, Tanzania. Random Forest (RF) method was applied to accomplish imagery classification and location-based social media (Twitter usage) data were obtained through a Twitter Application Programming Interface (API). Morogoro urban municipality was classified into built-up, vegetation, agriculture, and water land cover classes while the classification results were validated by the generation of 480 random points. Using the Kernel function, the study measured the location of Twitter users within a 1 km buffer from the center of the city. The results indicate that, expansion of the city (built-up land use), which is primarily driven by population expansion, has negative impacts on ecosystem services because pristine grasslands and forests which provide essential ecosystem services such as carbon sequestration and support for biodiversity have been replaced by built-up land cover. In addition, social media usage data suggest that there is the concentration of Twitter usage within the city center while Twitter usage declines away from the city center with significant spatial and numerical increase in Twitter usage in the study area. The outcome of the study suggests that the combination of remote sensing, social sensing, and population data were useful as a proxy/inference for interpreting urban sprawl and status of access to urban services and infrastructure in Morogoro, and Africa city where data for urban planning is often unavailable, inaccurate, or stale

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016

    Get PDF
    Lakes are important to the healthy functioning of the urban ecosystem. The urban lakes in Wuhan, China, which is known as ‘city of hundreds of lakes’, are facing substantial threats mainly due to rapid urbanization. This paper focused on detecting the spatial and temporal change of urban lakes in Wuhan, using a long time series of Landsat and HJ-1A remotely sensed data from 1987 to 2016. The permanent disappearance and seasonal fluctuation of 28 main urban lakes were analysed, and their relationships with climatic change and human activities were discussed. The results show that most lakes in Wuhan had shrunk over the past 30 years resulting in a permanent change from water to land. The shrinkage was also most apparent in the central region of the city. Seasonal fluctuations of lake area were evident for most lakes but the relative important driving variable of lake area change varied between sub-periods of time for different lakes. The explanatory power of impervious surface to five-year permanent water change is 91.75%, suggesting that urbanization – as increasing impervious surface – had led to the shrinkage of urban lakes in Wuhan. In all, 128.28 km2 five-year permanent water disappeared from 1987 to 2016

    Impervious surface change mapping with an uncertainty-based spatial-temporal consistency model: a case study in Wuhan city using Landsat time-series datasets from 1987 to 2016

    Get PDF
    Detailed information on the spatial-temporal change of impervious surfaces is important for quantifying the effects of rapid urbanization. Free access of the Landsat archive provides new opportunities for impervious surface mapping with fine spatial and temporal resolution. To improve the classification accuracy, a temporal consistency (TC) model may be applied on the original classification results of Landsat time-series datasets. However, existing TC models only use class labels, and ignore the uncertainty of classification during the process. In this study, an uncertainty-based spatial-temporal consistency (USTC) model was proposed to improve the accuracy of the long time series of impervious surface classifications. In contrast to existing TC methods, the proposed USTC model integrates classification uncertainty with the spatial-temporal context information to better describe the spatial-temporal consistency for the long time-series datasets. The proposed USTC model was used to obtain an annual map of impervious surfaces in Wuhan city with Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), and Operational Land Imager (OLI) images from 1987 to 2016. The impervious surfaces mapped by the proposed USTC model were compared with those produced by the support vector machine (SVM) classifier and the TC model. The accuracy comparison of these results indicated that the proposed USTC model had the best performance in terms of classification accuracy. The increase of overall accuracy was about 4.23% compared with the SVM classifier, and about 1.79% compared with the TC model, which indicates the effectiveness of the proposed USTC model in mapping impervious surfaces from long-term Landsat sensor imagery

    WEB MAPPING ARCHITECTURES BASED ON OPEN SPECIFICATIONS AND FREE AND OPEN SOURCE SOFTWARE IN THE WATER DOMAIN

    Get PDF
    The availability of water-related data and information across different geographical and jurisdictional scales is of critical importance for the conservation and management of water resources in the 21st century. Today information assets are often found fragmented across multiple agencies that use incompatible data formats and procedures for data collection, storage, maintenance, analysis, and distribution. The growing adoption of Web mapping systems in the water domain is reducing the gap between data availability and its practical use and accessibility. Nevertheless, more attention must be given to the design and development of these systems to achieve high levels of interoperability and usability while fulfilling different end user informational needs. This paper first presents a brief overview of technologies used in the water domain, and then presents three examples of Web mapping architectures based on free and open source software (FOSS) and the use of open specifications (OS) that address different users' needs for data sharing, visualization, manipulation, scenario simulations, and map production. The purpose of the paper is to illustrate how the latest developments in OS for geospatial and water-related data collection, storage, and sharing, combined with the use of mature FOSS projects facilitate the creation of sophisticated interoperable Web-based information systems in the water domain

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    • 

    corecore