26,398 research outputs found

    BigEAR: Inferring the Ambient and Emotional Correlates from Smartphone-based Acoustic Big Data

    Get PDF
    This paper presents a novel BigEAR big data framework that employs psychological audio processing chain (PAPC) to process smartphone-based acoustic big data collected when the user performs social conversations in naturalistic scenarios. The overarching goal of BigEAR is to identify moods of the wearer from various activities such as laughing, singing, crying, arguing, and sighing. These annotations are based on ground truth relevant for psychologists who intend to monitor/infer the social context of individuals coping with breast cancer. We pursued a case study on couples coping with breast cancer to know how the conversations affect emotional and social well being. In the state-of-the-art methods, psychologists and their team have to hear the audio recordings for making these inferences by subjective evaluations that not only are time-consuming and costly, but also demand manual data coding for thousands of audio files. The BigEAR framework automates the audio analysis. We computed the accuracy of BigEAR with respect to the ground truth obtained from a human rater. Our approach yielded overall average accuracy of 88.76% on real-world data from couples coping with breast cancer.Comment: 6 pages, 10 equations, 1 Table, 5 Figures, IEEE International Workshop on Big Data Analytics for Smart and Connected Health 2016, June 27, 2016, Washington DC, US

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Involving machine learning techniques in heart disease diagnosis: a performance analysis

    Get PDF
    Artificial intelligence is a science that is growing at a tremendous speed every day and has become an essential part of many domains, including the medical domain. Therefore, countless artificial intelligence applications can be seen in the medical domain at various levels, which are employed to enhance early diagnosis and prediction and reduce the risks associated with many diseases, including heart diseases. In this article, machine learning techniques (logistic regression, random forest, artificial neural network, support vector machines, and k-nearest neighbors) are utilized to diagnose heart disease from the Cleveland Clinic dataset got from the University of California Irvine machine learning (UCL) repository and Kaggle platform then create a comparison between the performance of these techniques. In addition, some literature related to machine learning and deep learning techniques that aim to provide reasonable solutions in monitoring, detecting, diagnosing, and predicting heart disease and how these technologies assist in making health decisions are reviewed. Ten studies are selected and summarized by the authors published between 2017 and 2022 are illustrated. After executing a series of tests, it is seen that the most profitable performance in diagnosing heart disease is the support vector machines, with a diagnostic accuracy of 96%. This article has concluded that these techniques play a significant and influential role in assisting physicians and health care workers in analyzing heart patients' data, making health decisions, and saving patients' lives

    Spartan Daily, September 13, 1979

    Get PDF
    Volume 73, Issue 7https://scholarworks.sjsu.edu/spartandaily/6505/thumbnail.jp

    Spartan Daily, September 13, 1979

    Get PDF
    Volume 73, Issue 7https://scholarworks.sjsu.edu/spartandaily/6505/thumbnail.jp
    corecore