12,038 research outputs found

    Multi-scale continuum mechanics: from global bifurcations to noise induced high-dimensional chaos

    Get PDF
    Many mechanical systems consist of continuum mechanical structures, having either linear or nonlinear elasticity or geometry, coupled to nonlinear oscillators. In this paper, we consider the class of linear continua coupled to mechanical pendula. In such mechanical systems, there often exist several natural time scales determined by the physics of the problem. Using a time scale splitting, we analyze a prototypical structural–mechanical system consisting of a planar nonlinear pendulum coupled to a flexible rod made of linear viscoelastic material. In this system both low-dimensional and high-dimensional chaos is observed. The low-dimensional chaos appears in the limit of small coupling between the continua and oscillator, where the natural frequency of the primary mode of the rod is much greater than the natural frequency of the pendulum. In this case, the motion resides on a slow manifold. As the coupling is increased, global motion moves off of the slow manifold and high-dimensional chaos is observed. We present a numerical bifurcation analysis of the resulting system illustrating the mechanism for the onset of high-dimensional chaos. Constrained invariant sets are computed to reveal a process from low-dimensional to high-dimensional transitions. Applications will be to both deterministic and stochastic bifurcations. Practical implications of the bifurcation from low-dimensional to high-dimensional chaos for detection of damage as well as global effects of noise will also be discussed

    Average activity of excitatory and inhibitory neural populations

    Get PDF
    We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activities are computed. Two different excitable systems are studied: Adler units and theta neurons. The resulting bifurcation diagrams are compared with those obtained from studying the phenomenological Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well as higher dimensional chaotic solutions, are observed. We study numerical simulations to further validate the equations.Fil: Roulet, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection

    Get PDF
    We examine a model system where attractors may consist of a heteroclinic cycle between chaotic sets; this ‘cycling chaos’ manifests itself as trajectories that spend increasingly long periods lingering near chaotic invariant sets interspersed with short transitions between neighbourhoods of these sets. Such behaviour is robust to perturbations that preserve the symmetry of the system; we examine bifurcations of this state. We discuss a scenario where an attracting cycling chaotic state is created at a blowout bifurcation of a chaotic attractor in an invariant subspace. This differs from the standard scenario for the blowout bifurcation in that in our case, the blowout is neither subcritical nor supercritical. The robust cycling chaotic state can be followed to a point where it loses stability at a resonance bifurcation and creates a series of large period attractors. The model we consider is a ninth-order truncated ordinary differential equation (ODE) model of three-dimensional incompressible convection in a plane layer of conducting fluid subjected to a vertical magnetic field and a vertical temperature gradient. Symmetries of the model lead to the existence of invariant subspaces for the dynamics; in particular there are invariant subspaces that correspond to regimes of two-dimensional flows, with variation in the vertical but only one of the two horizontal directions. Stable two-dimensional chaotic flow can go unstable to three-dimensional flow via the cross-roll instability. We show how the bifurcations mentioned above can be located by examination of various transverse Liapunov exponents. We also consider a reduction of the ODE to a map and demonstrate that the same behaviour can be found in the corresponding map. This allows us to describe and predict a number of observed transitions in these models. The dynamics we describe is new but nonetheless robust, and so should occur in other applications
    • …
    corecore