732 research outputs found

    A spatialized model of textures perception using structure tensor formalism

    Get PDF
    International audienceThe primary visual cortex (V1) can be partitioned into fundamental domains or hypercolumns consisting of one set of orientation columns arranged around a singularity or ''pinwheel'' in the orientation preference map. A recent study on the specific problem of visual textures perception suggested that textures may be represented at the population level in the cortex as a second-order tensor, the structure tensor, within a hypercolumn. In this paper, we present a mathematical analysis of such interacting hypercolumns that takes into account the functional geometry of local and lateral connections. The geometry of the hypercolumn is identified with that of the Poincaré disk \D. Using the symmetry properties of the connections, we investigate the spontaneous formation of cortical activity patterns. These states are characterized by tuned responses in the feature space, which are doubly-periodically distributed across the cortex

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves

    Full text link
    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction

    Spatiotemporal dynamics of continuum neural fields

    Get PDF
    We survey recent analytical approaches to studying the spatiotemporal dynamics of continuum neural fields. Neural fields model the large-scale dynamics of spatially structured biological neural networks in terms of nonlinear integrodifferential equations whose associated integral kernels represent the spatial distribution of neuronal synaptic connections. They provide an important example of spatially extended excitable systems with nonlocal interactions and exhibit a wide range of spatially coherent dynamics including traveling waves oscillations and Turing-like patterns

    Nonlocal Ginzburg-Landau equation for cortical pattern formation

    Get PDF
    We show how a nonlocal version of the real Ginzburg-Landau (GL) equation arises in a large-scale recurrent network model of primary visual cortex. We treat cortex as a continuous two-dimensional sheet of cells that signal both the position and orientation of a local visual stimulus. The recurrent circuitry is decomposed into a local part, which contributes primarily to the orientation tuning properties of the cells, and a long-range part that introduces spatial correlations. We assume that (a) the local network exists in a balanced state such that it operates close to a point of instability and (b) the long-range connections are weak and scale with the bifurcation parameter of the dynamical instability generated by the local circuitry. Carrying out a perturbation expansion with respect to the long-range coupling strength then generates a nonlocal coupling term in the GL amplitude equation. We use the nonlocal GL equation to analyze how axonal propagation delays arising from the slow conduction velocities of the long-range connections affect spontaneous pattern formation

    Classes de dynamiques neuronales et correlations structurées par l'experience dans le cortex visuel.

    No full text
    Neuronal activity is often considered in cognitive neuroscience by the evoked response but most the energy used by the brain is devoted to the sustaining of ongoing dynamics in cortical networks. A combination of classification algorithms (K means, Hierarchical tree, SOM) is used on intracellular recordings of the primary visual cortex of the cat to define classes of neuronal dynamics and to compare it with the activity evoked by a visual stimulus. Those dynamics can be studied with simplified models (FitzHugh Nagumo, hybrid dynamical systems, Wilson Cowan) for which an analysis is presented. Finally, with simulations of networks composed of columns of spiking neurons, we study the ongoing dynamics in a model of the primary visual cortex and their effect on the response evoked by a stimulus. After a learning period during which visual stimuli are presented, waves of depolarization propagate through the network. The study of correlations in this network shows that the ongoing dynamics reflect the functional properties acquired during the learning period.L'activitĂ© neuronale est souvent considĂ©rĂ©e en neuroscience cognitive par la rĂ©ponse Ă©voquĂ©e mais l'essentiel de l'Ă©nergie consommĂ©e par le cerveau permet d'entretenir les dynamiques spontanĂ©es des rĂ©seaux corticaux. L'utilisation combinĂ©e d'algorithmes de classification (K means, arbre hirarchique, SOM) sur des enregistrements intracellulaires du cortex visuel primaire du chat nous permet de dĂ©finir des classes de dynamiques neuronales et de les comparer l'activitĂ© Ă©voquĂ©e par un stimulus visuel. Ces dynamiques peuvent ĂȘtre Ă©tudiĂ©es sur des systĂšmes simplifiĂ©s (FitzHugh-Nagumo, systĂšmes dynamiques hybrides, Wilson-Cowan) dont nous prĂ©sentons l'analyse. Enfin, par des simulations de rĂ©seaux composĂ©s de colonnes de neurones, un modĂšle du cortex visuel primaire nous permet d'Ă©tudier les dynamiques spontanĂ©es et leur effet sur la rĂ©ponse Ă  un stimulus. AprĂšs une pĂ©riode d'apprentissage pendant laquelle des stimuli visuels sont presentĂ©s, des vagues de dĂ©polarisation se propagent dans le rĂ©seau. L'Ă©tude des correlations dans ce rĂ©seau montre que les dynamiques spontanĂ©es reflĂštent les propriĂ©tĂ©s fonctionnelles acquises au cours de l'apprentissage

    A dendritic mechanism for decoding traveling waves: Principles and applications to motor cortex

    Get PDF
    Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands
    • 

    corecore