3,925 research outputs found

    Localised states in an extended Swift-Hohenberg equation

    Get PDF
    Recent work on the behaviour of localised states in pattern forming partial differential equations has focused on the traditional model Swift-Hohenberg equation which, as a result of its simplicity, has additional structure --- it is variational in time and conservative in space. In this paper we investigate an extended Swift-Hohenberg equation in which non-variational and non-conservative effects play a key role. Our work concentrates on aspects of this much more complicated problem. Firstly we carry out the normal form analysis of the initial pattern forming instability that leads to small-amplitude localised states. Next we examine the bifurcation structure of the large-amplitude localised states. Finally we investigate the temporal stability of one-peak localised states. Throughout, we compare the localised states in the extended Swift-Hohenberg equation with the analogous solutions to the usual Swift-Hohenberg equation

    Instabilities and stickiness in a 3D rotating galactic potential

    Full text link
    We study the dynamics in the neighborhood of simple and double unstable periodic orbits in a rotating 3D autonomous Hamiltonian system of galactic type. In order to visualize the four dimensional spaces of section we use the method of color and rotation. We investigate the structure of the invariant manifolds that we found in the neighborhood of simple and double unstable periodic orbits in the 4D spaces of section. We consider orbits in the neighborhood of the families x1v2, belonging to the x1 tree, and the z-axis (the rotational axis of our system). Close to the transition points from stability to simple instability, in the neighborhood of the bifurcated simple unstable x1v2 periodic orbits we encounter the phenomenon of stickiness as the asymptotic curves of the unstable manifold surround regions of the phase space occupied by rotational tori existing in the region. For larger energies, away from the bifurcating point, the consequents of the chaotic orbits form clouds of points with mixing of color in their 4D representations. In the case of double instability, close to x1v2 orbits, we find clouds of points in the four dimensional spaces of section. However, in some cases of double unstable periodic orbits belonging to the z-axis family we can visualize the associated unstable eigensurface. Chaotic orbits close to the periodic orbit remain sticky to this surface for long times (of the order of a Hubble time or more). Among the orbits we studied we found those close to the double unstable orbits of the x1v2 family having the largest diffusion speed.Comment: 29pages, 25 figures, accepted for publication in the International Journal of Bifurcation and Chao

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio
    • ā€¦
    corecore