74 research outputs found

    Symmetries and periodic orbits in simple hybrid Routhian systems

    Get PDF
    Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaFil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Stability analysis and control for bipedal locomotion using energy methods

    Get PDF
    In this thesis, we investigate the stability of limit cycles of passive dynamic walking. The formation process of the limit cycles is approached from the view of energy interaction. We introduce for the first time the notion of the energy portrait analysis originated from the phase portrait. The energy plane is spanned by the total energy of the system and its derivative, and different energy trajectories represent the energy portrait in the plane. One of the advantages of this method is that the stability of the limit cycles can be easily shown in a 2D plane regardless of the dimension of the system. The energy portrait of passive dynamic walking reveals that the limit cycles are formed by the interaction between energy loss and energy gain during each cycle, and they are equal at equilibria in the energy plane. In addition, the energy portrait is exploited to examine the existence of semi-passive limit cycles generated using the energy supply only at the take-off phase. It is shown that the energy interaction at the ground contact compensates for the energy supply, which makes the total energy invariant yielding limit cycles. This result means that new limit cycles can be generated according to the energy supply without changing the ground slope, and level ground walking, whose energy gain at the contact phase is always zero, can be achieved without actuation during the swing phase. We design multiple switching controllers by virtue of this property to increase the basin of attraction. Multiple limit cycles are linearized using the Poincare map method, and the feedback gains are computed taking into account the robustness and actuator saturation. Once a trajectory diverges from a basin of attraction, we switch the current controller to one that includes the trajectory in its basin of attraction. Numerical simulations confirm that a set of limit cycles can be used to increase the basin of attraction further by switching the controllers one after another. To enhance our knowledge of the limit cycles, we performed sophisticated simulations and found all stable and unstable limit cycles from the various ground slopes not only for the symmetric legs but also for the unequal legs that cause gait asymmetries. As a result, we present a novel classification of the passive limit cycles showing six distinct groups that are consecutive and cyclical

    Control and identification of bipedal humanoid robots : stability analysis and experiments

    Get PDF

    Viability in State-Action Space: Connecting Morphology, Control, and Learning

    Get PDF
    Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu lernen? Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotikers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf diese motivierende Frage. Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebenen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hardals auch das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der Systemdynamik untrennbar miteinander verbunden sind. Die zweite ist die Formalisierung einer Sicherheitsmass, die modellfrei erlernt werden kann. Intuitiv zeigt diese Mass an, wie leicht ein Roboter Fehlschläge vermeiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkunden und gleichzeitig Ausfälle vermeiden. Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilitätstheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme: Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gleichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Stabilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet werden kann. Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweitert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen definierte Mass ermöglicht eine quantifizierte Bewertung der Robustheit, die für die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres, modellfreies Lernen. Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist eine empirische Demonstration der Shaping durch ausschliessliche Modifikation der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robustheit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninformationen für den Lernprozess. Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitialisierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie, dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu initialisieren, der bekanntermassen unkontrollierbar ist.How can we enable robots to learn control model-free and directly on hardware? Machine learning is taking its place as a standard tool in the roboticist’s arsenal. However, there are several open questions on how to learn control for physical systems. This thesis provides two answers to this motivating question. The first is a formal means to quantify the inherent robustness of a given system design, prior to designing the controller or learning agent. This emphasizes the need to consider both the hardware and software design of a robot, which are inseparably intertwined in the system dynamics. The second is the formalization of a safety-measure, which can be learned model-free. Intuitively, this measure indicates how easily a robot can avoid failure, and enables robots to explore unknown environments while avoiding failures. The main contributions of this dissertation are based on viability theory. Viability theory provides a slightly unconventional view of dynamical systems: instead of focusing on a system’s convergence properties towards equilibria, the focus is shifted towards sets of failure states and the system’s ability to avoid these sets. This view is particularly well suited to studying learning control in robots, since stability in the sense of convergence can rarely be guaranteed during the learning process. The notion of viability is formally extended to state-action space, with viable sets of state-action pairs. A measure defined over these sets allows a quantified evaluation of robustness valid for the family of all failure-avoiding control policies, and also paves the way for enabling safe model-free learning. The thesis also includes two minor contributions. The first minor contribution is an empirical demonstration of shaping by exclusively modifying the system dynamics. This demonstration highlights the importance of robustness to failures for learning control: not only can failures cause damage, but they typically do not provide useful gradient information for the learning process. The second minor contribution is a study on the choice of state initializations. Counter to intuition and common practice, this study shows it can be more reliable to occasionally initialize the system from a state that is known to be uncontrollable

    The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems

    Get PDF
    This paper compares the Hamiltonian approach to systems with nonholonomic constraints (see Weber [1982], Arnold [1988], and Bates and Sniatycki [1993], van der Schaft and Maschke [1994] and references therein) with the Lagrangian approach (see Koiller [1992], Ostrowski [1996] and Bloch, Krishnaprasad, Marsden and Murray [1996]). There are many differences in the approaches and each has its own advantages; some structures have been discovered on one side and their analogues on the other side are interesting to clarify. For example, the momentum equation and the reconstruction equation were first found on the Lagrangian side and are useful for the control theory of these systems, while the failure of the reduced two form to be closed (i.e., the failure of the Poisson bracket to satisfy the Jacobi identity) was first noticed on the Hamiltonian side. Clarifying the relation between these approaches is important for the future development of the control theory and stability and bifurcation theory for such systems. In addition to this work, we treat, in this unified framework, a simplified model of the bicycle (see Getz [1994] and Getz and Marsden [1995]), which is an important underactuated (nonminimum phase) control system
    • …
    corecore