103 research outputs found

    Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons

    Get PDF
    Understanding common dynamical principles underlying an abundance of widespread brain behaviors is a pivotal challenge in the new century. The bottom-up approach to the challenge should be based on solid foundations relying on detailed and systematic understanding of dynamical functions of its basic components—neurons—modeled as plausibly within the Hodgkin-Huxley framework as phenomenologically using mathematical abstractions. Such one is the Hindmarsh-Rose (HR) model, reproducing fairly the basic oscillatory activities routinely observed in isolated biological cells and in neural networks. This explains a wide popularity of the HR-model in modern research in computational neuroscience. A challenge for the mathematics community is to provide detailed explanations of fine aspects of the dynamics, which the model is capable of, including its responses to perturbations due to network interactions. This is the main focus of the bifurcation theory exploring quantitative variations and qualitative transformations of a system in its parameter space. We will show how generic homoclinic bifurcations of equilibria and periodic orbits can imply transformations and transitions between oscillatory activity types in this and other bursting models of neurons of the Hodgkin-Huxley type. The article is focused specifically on bifurcation scenarios in neuronal models giving rise to irregular or chaotic spiking and bursting. The article demonstrates how the combined use of several state-of-the-art numerical techniques helps us confine “onion”-like regions in the parameter space, with macro-chaotic complexes as well as micro-chaotic structures occurring near spike-adding bifurcations

    Deterministic and stochastic dynamics of multi-variable neuron models : resonance, filtered fluctuations and sodium-current inactivation

    Get PDF
    Neurons are the basic elements of the networks that constitute the computational units of the brain. They dynamically transform input information into sequences of electrical pulses. To conceive the complex function of the brain, it is crucial to understand this transformation and identify simple neuron models which accurately reproduce the known features of biological neurons. This thesis addresses three different features of neurons. We start by exploring the effect of subthreshold resonance on the response of a periodically forced neuron using a simple threshold model. The response is studied in terms of an implicit one-dimensional time map that corresponds to the Poincar´e map of the forced system. Qualitatively distinct responses are found, including mode locking and chaos. We analytically find the stability regions of mode-locking solutions, and identify the transition to chaos through period-adding bifurcations. We show that the response becomes chaotic when the forcing frequency is close to the resonant frequency. Then we will consider an experimentally verified model with realistic spikegenerating mechanism and study the effect of filtered synaptic fluctuations on the firing-rate response of the neuron. Using a population density method as well as an efficient numerical method, we find the steady-state firing rate in two limits of fast and slow synaptic inputs and present the linear response theory for the firing rate of the model in response to both time-dependent mean inputs and time-dependent noise intensity. Finally, a novel model is introduced that incorporates threshold variability of neurons. We determine the modulation of the input-output properties of the model due to oscillatory inputs and in the presence of filtered synaptic fluctuations.EThOS - Electronic Theses Online ServiceUniversity of WarwickOverseas Research Students Awards Scheme (ORSAS)GBUnited Kingdo

    Mean-Field Coupled Systems and Self-Consistent Transfer Operators: A Review

    Full text link
    In this review we survey the literature on mean-field coupled maps. We start with the early works from the physics literature, arriving to some recent results from ergodic theory studying the thermodynamic limit of globally coupled maps and the associated self-consistent transfer operators. We also give few pointers to related research fields dealing with mean-field coupled systems in continuous time, and applications

    Dynamics meets Morphology: towards Dymorph Computation

    Get PDF
    In this dissertation, approaches are presented for both technically using and investigating biological principles with oscillators in the context of electrical engineering, in particular neuromorphic engineering. Thereby, dynamics as well as morphology as important neuronal principles were explicitly selected, which shape the information processing in the human brain and distinguish it from other technical systems. The aspects and principles selected here are adaptation during the encoding of stimuli, the comparatively low signal transmission speed, the continuous formation and elimination of connections, and highly complex, partly chaotic, dynamics. The selection of these phenomena and properties has led to the development of a sensory unit that is capable of encoding mechanical stress into a series of voltage pulses by the use of a MOSFET augmented by AlScN. The circuit is based on a leaky integrate and fire neuron model and features an adaptation of the pulse frequency. Furthermore, the slow signal transmission speed of biological systems was the motivation for the investigation of a temporal delay in the feedback of the output pulses of a relaxation oscillator. In this system stable pulse patterns which form due to so-called jittering bifurcations could be observed. In particular, switching between different stable pulse patterns was possible to induce. In the further course of the work, the first steps towards time-varying coupling of dynamic systems are investigated. It was shown that in a system consisting of dimethyl sulfoxid and zinc acetate, oscillators can be used to force the formation of filaments. The resulting filaments then lead to a change in the dynamics of the oscillators. Finally, it is shown that in a system with chaotic dynamics, the extension of it with a memristive device can lead to a transient stabilisation of the dynamics, a behaviour that can be identified as a repeated pass of Hopf bifurcations

    Slow dynamics in structured neural network models

    Get PDF
    Humans and some other animals are able to perform tasks that require coordination of movements across multiple temporal scales, ranging from hundreds of milliseconds to several seconds. The fast timescale at which neurons naturally operate, on the order of tens of milliseconds, is well-suited to support motor control of rapid movements. In contrast, to coordinate movements on the order of seconds, a neural network should produce reliable dynamics on a similarly âslowâ timescale. Neurons and synapses exhibit biophysical mechanisms whose timescales range from tens of milliseconds to hours, which suggests a possible role of these mechanisms in producing slow reliable dynamics. However, how such mechanisms influence network dynamics is not yet understood. An alternative approach to achieve slow dynamics in a neural network consists in modifying its connectivity structure. Still, the limitations of this approach and in particular to what degree the weights require fine-tuning, remain unclear. Understanding how both the single neuron mechanisms and the connectivity structure might influence the network dynamics to produce slow timescales is the main goal of this thesis. We first consider the possibility of obtaining slow dynamics in binary networks by tuning their connectivity. It is known that binary networks can produce sequential dynamics. However, if the sequences consist of random patterns, the typical length of the longest sequence that can be produced grows linearly with the number of units. Here, we show that we can overcome this limitation by carefully designing the sequence structure. More precisely, we obtain a constructive proof that allows to obtain sequences whose length scales exponentially with the number of units. To achieve this however, one needs to exponentially fine-tune the connectivity matrix. Next, we focus on the interaction between single neuron mechanisms and recurrent dynamics. Particular attention is dedicated to adaptation, which is known to have a broad range of timescales and is therefore particularly interesting for the subject of this thesis. We study the dynamics of a random network with adaptation using mean-field techniques, and we show that the network can enter a state of resonant chaos. Interestingly, the resonance frequency of this state is independent of the connectivity strength and depends only on the properties of the single neuron model. The approach used to study networks with adaptation can also be applied when considering linear rate units with an arbitrary number of auxiliary variables. Based on a qualitative analysis of the mean-field theory for a random network whose neurons are described by a D -dimensional rate model, we conclude that the statistics of the chaotic dynamics are strongly influenced by the single neuron model under investigation. Using a reservoir computing approach, we show preliminary evidence that slow adaptation can be beneficial when performing tasks that require slow timescales. The positive impact of adaptation on the network performance is particularly strong in the presence of noise. Finally, we propose a network architecture in which the slowing-down effect due to adaptation is combined with a hierarchical structure, with the purpose of efficiently generate sequences that require multiple, hierarchically organized timescales

    Fluid limit theorems for stochastic hybrid systems with application to neuron models

    Full text link
    This paper establishes limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamic coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to estimate numerically impact of channel noise both on frequency and spike timing coding.Comment: 42 pages, 4 figure

    Mathematical modeling with applications in biological systems, physiology, and neuroscience

    Get PDF
    Doctor of PhilosophyDepartment of MathematicsBacim AlaliDynamical systems modeling is used to describe different biological and physical systems as well as to predict the interactions between multiple components of a system over time. A dynamical system describes the evolution of a given system over time using a set of mathematical laws, typically described by differential equations. There are two main methods to model the dynamical behaviors of a system: continuous time modeling and discrete-time modeling. When the time between two measurements is negligible, the continuous time modeling governs the evolution of the system, however, when there is a gap between any two consecutive measurements, discrete-time system modeling comes into play. Differential equations are used to model continuous systems and iterated maps represent the generations in discrete-time systems. In this dissertation, we study some dynamical systems and present their applications to different problems in biological systems, physiology, and neuroscience. In chapter one, we study the local dynamics of some interesting systems and show the local stable behavior of the system around its critical points. Moreover, we investigate the local dynamical behavior of different systems including the HĂŠnon-Heiles system, the Duffing oscillator, and the Van der Pol equation. Furthermore, we discuss about the chaotic behavior of Hamiltonian systems using two different and new examples. In chapter two, we consider some models in computational neuroscience. Due to the complexity of nerve systems, linear modeling methods are not sufficient to understand the various phenomena in neuroscience. We use nonlinear methods and models, which aim at capturing certain properties of the neurons and their complex dynamics. Specifically, we explore the interesting phenomenon of firing spikes and complex dynamics of the Morris-Lecar model. We consider a set of parameters such that the model exhibits a wide range of phenomenon. We investigate the influences of injected current and temperature on the spiking dynamics of Morris-Lecar model. In addition, we study bifurcations, and computational properties of this neuron model. Moreover, we provide a bound for the membrane potential and a certain voltage value or threshold for firing the spikes. Studying the two co-dimension bifurcations demonstrates more complicated behaviors for this single neuron model. Furthermore, we describe the phenomenon of neural bursting and investigate the dynamics of Morris-Lecar model as a square-wave burster, elliptic burster and parabolic burster. Pharmacokinetic models are mathematical models, which provide insights into the interaction of chemicals with certain biological processes. In chapter three, we consider the process of drug and nanoparticle (NPs) distribution throughout the body. We use a tricompartmental model to study the perfusion of NPs in tissues and a six-compartmental model to study drug distribution in different body organs. We perform global sensitivity analysis by LHS Monte Carlo method using Partial Rank Correlation Coefficient (PRCC). We identify the key parameters that contribute most significantly to the absorption and distribution of drugs and NPs in different organs in the body. In chapter four, we study two infectious disease models and use nonlinear optimization and optimal control theory to help in identifying strategies for transmission control and forecasting the spread of infectious diseases. We analyze the effect of vaccination on the disease transmission in these models. Moreover, we perform global sensitivity analysis to investigate the key parameters in these models. In chapter five, we investigate the complex dynamics of two-species Ricker-type discrete-time competitive model. We perform local stability analysis for the fixed points of the system and discuss about its persistence for boundary fixed points. This system inherits properties of the dynamics of a one-dimensional Ricker model such as the cascade of period-doubling bifurcation, periodic windows, and chaos. We explore the existence of chaos for the equilibrium points for a specific case of this system using Marotto theorem and show the existence of snap-back repeller. In chapter six, we study the problem of chaos synchronization in certain discrete-time dynamical systems. We introduce a drive-response discrete-time dynamical system, which is coupled using convex link function. We investigate a synchronization threshold, after which, the drive-response system uncouples and loses its synchronized behaviors. We apply this method to the synchronized cycles of the Ricker model and show that this model displays a rich cascade of complex dynamics from a stable fixed point and cascade of period-doubling bifurcation to chaos. We numerically verify the effectiveness of the proposed scheme and demonstrate how this type of coupling affects the synchronization of the system. In chapter seven, we study the synchronized cycles of a generalized Nicholson-Bailey model. This model demonstrates a rich cascade of complex dynamics from a stable fixed point to periodic orbits, quasi periodic orbits and chaos. We introduce a coupling of these two chaotic systems with different initial conditions and show how they synchronize over a short time. We investigate the qualitative behavior of Generalized Nicholson-Bailey model and its synchronized model using time series analysis and its long-time dynamics by using its bifurcation diagram

    Oscillations in routing and chaos

    Get PDF
    • …
    corecore