159 research outputs found

    Applications of quantum cryptographic switch: Various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles

    Full text link
    Recently, several aspects of controlled quantum communication (e.g., bidirectional controlled state teleportation, controlled quantum secure direct communication, controlled quantum dialogue, etc.) have been studied using nn-qubit (n≥3n\geq3) entanglement. Specially, a large number of schemes for bidirectional controlled state teleportation are proposed using mm-qubit entanglement (m∈{5,6,7}m\in\{5,6,7\}). Here, we propose a set of protocols to illustrate that it is possible to realize all these tasks related to controlled quantum communication using only Bell states and permutation of particles (PoP). As the generation and maintenance of a Bell state is much easier than a multi-partite entanglement, the proposed strategy has a clear advantage over the existing proposals. Further, it is shown that all the schemes proposed here may be viewed as applications of the concept of quantum cryptographic switch which was recently introduced by some of us. The performances of the proposed protocols as subjected to the amplitude damping and phase damping noise on the channels are also discussed.Comment: 12 pages, 3 figure

    Design and experimental realization of an optimal scheme for teleportion of an nn-qubit quantum state

    Full text link
    An explicit scheme (quantum circuit) is designed for the teleportation of an nn-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources has been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general nn-qubit state considered here. A trade off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof of principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. Experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional-controlled state teleportation.Comment: 11 pages 4 figure

    Hierarchical Joint Remote State Preparation in Noisy Environment

    Full text link
    A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver's port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state is concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued all the receivers don't possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.Comment: 24 pages, 6 figure

    Quantum e-commerce: A comparative study of possible protocols for online shopping and other tasks related to e-commerce

    Full text link
    A set of quantum protocols for online shopping is proposed and analyzed to establish that it is possible to perform secure online shopping using different types of quantum resources. Specifically, a single photon based, a Bell state based and two 3-qubit entangled state based quantum online shopping schemes are proposed. The Bell state based scheme, being a completely orthogonal state based protocol, is fundamentally different from the earlier proposed schemes which were based on conjugate coding. One of the 3-qubit entangled state based scheme is build on the principle of entanglement swapping which enables us to accomplish the task without transmission of the message encoded qubits through the channel. Possible ways of generalizing the entangled state based schemes proposed here to the schemes which use multiqubit entangled states is also discussed. Further, all the proposed protocols are shown to be free from the limitations of the recently proposed protocol of Huang et al. (Quantum Inf. Process. 14, 2211-2225, 2015) which allows the buyer (Alice) to change her order at a later time (after initially placing the order and getting it authenticated by the controller). The proposed schemes are also compared with the existing schemes using qubit efficiency.Comment: It's shown that quantum e-commerce is not a difficult task, and it can be done in various way

    Recursive quantum repeater networks

    Full text link
    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layering, and virtualizes the addresses of resources to improve information hiding and resource management. Our architecture is useful for building arbitrary distributed states, including fundamental distributed states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page
    • …
    corecore