283 research outputs found

    Design and implementation of a passivity-based controller to regulate the power flow in a DAB of a SST

    Get PDF
    The SST is one of the determining elements of the smart grid since it has the functionalities of a conventional transformer and allows an appropriate integration of distributed generation sources, loads, and energy storage devices with the traditional power grid.The interest in updating electrical networks and the possibility of having power semiconductor devices with better features (e.g., reliability and efficiency) have encouraged the production of elements, such as a Solid-State Transformer (SST). The SST is one of the determining elements of the smart grid since it has the functionalities of a conventional transformer and allows an appropriate integration of distributed generation sources, loads, and energy storage devices with the traditional power grid, in addition to having system functionality advantages such as unity power factor, mitigation of sags and swells, improving system efficiency and quality, and allowing a bidirectional flow of power. For this reason, the SST could replace the traditional transformer, considering the advantages it offers functional and physicals (less weight and volume). The intelligent energy management of an SST in a smart grid is feasible through the regulation of the power flow in its central device so-called Dual Active Bridge (DAB), which due to its topology (two half-bridge and a high-frequency link) make possible the bidirectionally on the power flow and permit the interconnection of renewable sources and other elements dc into a smart grid, and that in this way the advantages of SST can be made available within a power system. Hence, this work focuses on proposing a current controller based on Proportional-Integral (PI) passivity that regulates the power flow bidirectionally in a DAB. The proposed controller guarantees the system’s stability in a closed-loop, maintaining its passive properties. In addition, this controller preserves the simplicity of a PI control with high performance and robustness, where its control law is simple and does not depend on the converter’s parametersMaestríaMagíster en Ingeniería EléctricaTable of Contents 1 Introduction 7 1.1 Definition of the Problem . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Overall objective . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Dynamical Model of a DAB 14 2.1 DAB Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 DAB Model as a Port-Hamiltonian System . . . . . . . . . . . . . 16 3 PI Passivity-Based Control 18 3.1 Port-Hamiltonian Passive System . . . . . . . . . . . . . . . . . . 18 3.2 PI-PBC Controller Design and Stability Analysis . . . . . . . . . . 19 3.3 DAB Controller Design . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Simulations and Experimental Results 22 5 Conclusions 37 6 Appendices 43 6.1 Appendix A. Gate drivers schematic. . . . . . . . . . . . . . . . . 43 6.2 Appendix B. Voltage signal conditioning circuit. . . . . . . . . . . 44 6.3 Appendix C. Current signal conditioning circuit. . . . . . . . . . . 44 6.4 Appendix D. PI-PBC control diagram for DAB converter and C2000 processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.5 Appendix E. Classical PI control diagram for DAB converter and C2000 processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Modeling, Simulation and Control of Doubly-Fed Induction Machine Controlled by Back-to-Back converter

    Get PDF
    Aquesta Tesi estudia el control d'un sistema complex, un sistema d'emmagatzement d'energia cinètica, incloent les seves especificacions de control, modelat, disseny de controladors, simulacions, muntatge i validació experimental.Primerament, s'estudia l'interconnexió i control dels sistemes electromecànics. Es presenta el formalisme Hamiltonià (PCHS) en general, i després particularitzant en els sistemes electromecànics, inclòs els sistemes d'estructura variable (VSS).L'IDA-PBC (Interconnection and damping assignment-passivity based control) és una tècnica de control basat en els PCHS. En aquesta Tesi s'estudien el problemes que apareixen en controlar, per IDA-PBC, sortides de grau relatiu u quan el paràmetres nominals del controlador són incerts. Per evitar-los es proposa introduir una acció integral que pot ésser interpretada dins l'estructura Hamiltoniana.En aquesta Tesi també es presenten dues modificacions que permeten millorar el rang d'aplicacions de la tècnica IDA-PBC. Primer, es demostra que el fet de descomposar la tècnica de l'IDA-PBC en deformar la funció d'energia i una injecció de fregament, redueix el conjunt de sistemes que es poden estabilitzar mitjançant aquest mètode. Per evitar aquest problema, es proposa fer simultàniament els dos passos donant lloc a l'anomenat SIDA-PBC. Per altre costat, el mètode IDA-PBC requereix el coneixement de la funció energia (o Hamiltonià). Això representa un problema perquè, en general, el punt d'equilibri depèn de paràmetres incerts. En aquest treball es desenvolupa una metodologia per seleccionar l'estructura Hamiltoniana que redueix aquesta dependència dels paràmetres. Aquesta tècnica permet millorar la robustesa dels les sortides d'ordre relatiu superior a u.El sistema d'emmagatzement d'energia cinètica consisteix en una màquina d'inducció doblament alimentada (DFIM) amb un volant d'inèrcia, controlada pel rotor per un convertidor de potència back-to-back (B2B). L'objectiu és gestionar el flux d'energia entre la DFIM i una càrrega local connectada a la xarxa, commutant entre diferents punts de funcionament. Per això es planteja una gestió de l'energia, basada en la velocitat òptima de la DFIM.Pel què fa al control de la DFIM, es proposa un nou esquema de control que ofereix importants avantatges, i que és considerablement més senzill que el mètode clàssic, el vector control. Aquest nou controlador permet una fàcil descomposició de les potències activa i reactiva de l'estator, i el seu control a través de les tensions de rotor. Aquest disseny s'obté aplicant el procediment que millora la robustesa de l'IDA-PBC.S'han estudiat d'altres controladors, com el vector control clàssic. També a partir de la tècnica IDA-PBC, on l'equació en derivades parcials que apareix en aplicar el mètode es pot resoldre fixant l'energia en llaç tancat, i afegint nous termes a la matriu d'interconnexió. Per obtenir un controlador definit globalment s'afegeix un terme de fregament depenent dels estats, que desacobla la part elèctrica i mecànica del sistema. Finalment, també es prova que mitjançant el SIDA-PBC es pot modelar l'energia total (elèctrica i mecànica) de la DFIM. Tots aquest controladors han estat simulats i comparats. El controlador robust IDA-PBC s'ha validat experimentalment amb uns resultats satisfactoris. A la Tesi també es presenta un controlador que permet el flux bidireccional de potència pel B2B. L'estudi de la dinàmica zero adverteix que les tècniques de control estàndard no garanties en l'estabilitat en ambdós direccions, i per això s'utilitza un controlador IDA-PBC. Pel disseny s'utilitza un model basat en GSSA (generalized state space averaging), on es descomposa i es trunca el sistema per determinades freqüències, i que permet expresar els objectius de control (tensió constant al bus de contínua i factor de potència unitari) com un problema de regulació. Les simulacions i els resultats experimentals validen, tant la llei de control, com les simplificacions efectuades.Els controladors proposats i validats experimentalment són usats, finalment, per implementar la gestió de potència del sistema d'emmegatzement d'energia cinètica. Els resultats confirmen el bon comportament del sistema i dels controladors IDA-PBC proposats.This Thesis studies a complex multidomain system, the Flywheel Energy Storage System, including the control objectives specification, modeling, control design, simulation, experimental setup assembling and experimental validation stages.The port interconnection and control of electromechanical systems is studied. The port Hamiltonian formalism is presented in general, and particularized for generalized electromechanical systems, including variable structure systems (VSS).Interconnection and damping assignment-passivity based control (IDA-PBC) is a well known technique for port Hamiltonian systems (PCHS). In this Thesis we point out the kind of problems that can appear in the closed-loop structure obtained by IDA-PBC methodsfor relative degree one outputs, when nominal values are used in a system with uncertain parameters. To correct this, we introduce an integral control, which can be cast into the Hamiltonian framework.This Thesis also presents two new approaches which improve the range of applicability of the IDA-PBC technique. First, we show that the standard two-stage procedure used in IDA-PBC consisting of splitting the control action into the sum of energy-shaping and damping injection terms is not without loss of generality, and effectively reduces the set of systems that can be stabilized with IDA-PBC. To overcome this problem we suggest to carry out simultaneously both stages and refer to this variation of the method as SIDA-PBC.Secondly, we present an improvement of the IDA-PBC technique. The IDA-PBC method requires the knowledge of the full energy (or Hamiltonian) function. This is a problem because, in general, the equilibrium point which is to be regulated depends on uncertain parameters. We show how select the target port-Hamiltonian structure so that this dependence is reduced. This new approach allows to improve the robustness for higher relative degree outputs.The Flywheel Energy Storage System consists of a doubly-fed induction machine (DFIM), controlled through the rotor voltage by a power electronics subsystem (a back-to-back AC/AC converter (B2B)), and coupled to flywheel. The control objective is to optimally regulate the power flow between the DFIM and a local load connected to the grid, and this is achieved by commuting between different steady-state regimes. A police management based on the optimal speed for the DFIM is proposed.In this Thesis we propose a new control scheme for the DFIM that offers significant advantages, and is considerably simpler, than the classical vector control method. This controller allows an easy decomposition of the active and reactive powers on the stator side and their regulation, acting on the rotor voltage, via stator current control. This design was obtained applying the new robust IDA-PBC procedure.Other controllers are also designed along the dissertation. The classical vector control is studied. We also apply the classic IDA-PBC technique. It is shown that the partial differential equation that appears in this method can be circumvented by fixing the desired closed-loop total energy and adding new terms to the interconnection structure. Furthermore, to obtain a globally defined control law we introduce a state--dependent damping term that has the nice interpretation of effectively decoupling the electrical and mechanical parts of the system. This results in a globally convergent controller parameterized by two degrees of freedom. Finally, we also prove that with SIDA-PBC we can shape the total energy of the full (electrical and mechanical) dynamics of the DFIM. These different controllers (vector control, IDA-PBC, SIDA-PBC and robust IDA-PBC) are simulated and compared. The IDA-PBC robust controller is also experimentally tested and shown to work satisfactorily.A controller able to achieve bidirectional power flow for the B2B converter is presented. Standard techniques cannot be used since it is shown that no single output yields a stable zero dynamics for power flowing both ways. The controller is computed using standard IDA-PBC techniques for a suitable generalized state space averaging truncation of the system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation and experimental results for the full system confirm the correctness of the simplifications introduced to obtain the controller.The proposed and tested controllers for the DFIM and the B2B are used to implement the power management policy. These results show a good performance of the flywheel energy storage system and also validate the IDA-PBC technique, with the proposed improvements

    Energy Shaping Control for Stabilization of Interconnected Voltage Source Converters in Weakly-Connected AC Microgrid Systems

    Get PDF
    With the ubiquitous installations of renewable energy resources such as solar and wind, for decentralized power applications across the United States, microgrids are being viewed as an avenue for achieving this goal. Various independent system operators and regional transmission operators such as Southwest Power Pool (SPP), Midcontinent System Operator (MISO), PJM Interconnection and Electric Reliability Council of Texas (ERCOT) manage the transmission and generation systems that host the distributed energy resources (DERs). Voltage source converters typically interconnect the DERs to the utility system and used in High voltage dc (HVDC) systems for transmitting power throughout the United States. A microgrid configuration is built at the 13.8kV 4.75MVA National Center for Reliable Energy Transmission (NCREPT) testing facility for performing grid-connected and islanded operation of interconnected voltage source converters. The interconnected voltage source converters consist of a variable voltage variable frequency (VVVF) drive, which powers a regenerative (REGEN) load bench acting as a distributed energy resource emulator. Due to the weak-grid interface in islanded mode testing, a voltage instability occurs on the VVVF dc link voltage causing the system to collapse. This dissertation presents a new stability theorem for stabilizing interconnected voltage source converters in microgrid systems with weak-grid interfaces. The new stability theorem is derived using the concepts of Dirac composition in Port-Hamiltonian systems, passivity in physical systems, eigenvalue analysis and robust analysis based on the edge theorem for parametric uncertainty. The novel stability theorem aims to prove that all members of the classes of voltage source converter-based microgrid systems can be stabilized using an energy-shaping control methodology. The proposed theorems and stability analysis justifies the development of the Modified Interconnection and Damping Assignment Passivity-Based Control (Modified IDA-PBC) method to be utilized in stabilizing the microgrid configuration at NCREPT for mitigating system instabilities. The system is simulated in MATLAB/SimulinkTM using the Simpower toolbox to observe the system’s performance of the designed controller in comparison to the decoupled proportional intergral controller. The simulation results verify that the Modified-IDA-PBC is a viable option for dc bus voltage control of interconnected voltage source converters in microgrid systems

    Experimental results on an IDA-PBC controller for a full-bridge boost converter

    Get PDF
    Experimental results of a new controller able to support bidirectional power flow in a full-bridge rectifier with boost-like topology are obtained. The controller is computed using port Hamiltonian passivity techniques for a suitable generalized state space averaging truncation system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation results for the full system show the essential correctness of the simplifications introduced to obtain the controller, although some small experimental discrepancies point to several aspects that need further improvement

    Sliding mode control of a dc-dc dual active bridge using the generalized space-state averaging description

    Get PDF
    This paper presents a sliding mode control strategy for a dc-dc dual active bridge converter. The controller is based on a truncated model obtained using the generalized state space averaging method that transforms the mixed dcac dynamics of the converter into a regulation problem. The proposed controller, that uses a dynamic extension to overcome the structural problem of the non-affine control input, provides good results in terms of performance and robustness. Numerical simulations are included to validate the proposed modelling methodology and the control design.Peer ReviewedPostprint (published version

    Energy-based modelling and simulation of the interconnection of a back-to-back converter and a doubly-fed induction machine

    Get PDF
    This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.Peer Reviewe

    Energy-based modelling and simulation of the interconnection of a back-to-back converter and a doubly-fed induction machine

    Get PDF
    This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to the presence of control-actuated switches; however, from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to test the correctness and efficiency of the Hamiltonian network modelling approach used in this work.Peer Reviewe

    Grid Converters for Stationary Battery Energy Storage Systems

    Get PDF

    Energy-based modelling and control of a multi-domain energy storage and management system

    Get PDF
    We give an overview of part of the chapter of the Geoplex book devoted to examples, specifically the one which deals with electromechanical systems. We study a rather complex example of a port Hamiltonian system made of two subsystems, presenting each some remarkable characteristics, namely interconnection structures which depend either on the system state or on a discontinuous control variable. The first subsystem, a doubly-fed induction machine (DFIM), like most rotating electric machinery, has a complicated, geometry depending energy function, encoding in a lumped parameter description the interaction of the stator and rotor magnetic field. After a coordinate change, this dependence can be absorbed into the intercommunication structure, resulting in a model which has the additional feature of yielding itself quite easily to the formulation of sensible control problems. The second subsystem, a back-to-back (B2B) power converter made of a rectifier and an inverter, also has, this time from the beginning, an interconnection structure which caries the topology of the system, and which can be controlled by the state of a set of switches. We describe the detailed port Hamiltonian structure of both subsystems, their interconnection and the design of suitable IDA.PBC controllers for both of them. The associated bond-graph description is also presented, and simulations using 20sim are runPeer Reviewe

    Stratégies de gestion d’énergie pour véhicules électriques et hybride avec systèmes hybride de stockage d’énergie

    Get PDF
    Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le domaine du transporte. En raison des limites des différents systèmes de stockage et de conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées • un sous-système de stockage d'énergie hybride combinant des batteries et des supercondensateurs (SC) ; • et un sous-système de traction hybride parallèle combinant moteur à combustion interne et entraînement électrique. Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, ce qui peut être difficile à réaliser dans des applications réelles. L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont systématiques et performantes. Les performances des SGE proposées sont vérifiées en simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, les capacités en temps réel des SGE développées sont validées via des expériences en « hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des stratégies proposées développées par l'approche unifiée de la thèse.Abstract: Electric and hybrid vehicles are among the keys to solve the problems of global warming and exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and energy converters in terms of power and energy, hybridizations are of interest for future electrified vehicles. Two typical hybridizations are studied in this thesis: • hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and • hybrid traction subsystem combining internal combustion engine and electric drive. Such combined energy sources and converters must be handled by energy management strategies (EMSs). In which, optimization-based methods are of interest due to their high performance. Nonetheless, these methods are often complicated and computation consuming which can be difficult to be realized in real-world applications. The objective of this thesis is to develop simple but effective real-time optimization-based EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The complexities of the studied system are tackled by using Energetic Macroscopic Representation (EMR) which helps to conduct reduced models for energy management at the supervisory level. Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. These strategies are simple due to the suitable model reductions but systematic and high-performance due to the optimization-based methods. The performances of the proposed strategies are verified via simulations by comparing with off-line optimal benchmark deduced by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated via experiments by using reduced-scale power hardware-in-the-loop simulation. The results confirm the advantages of the proposed strategies developed by the unified approach in the thesis
    • …
    corecore