5,473 research outputs found

    Time-Bounded Controlled Bidirectional Grammars

    Get PDF
    We study regularly controlled bidirectional (RCB) grammars from the viewpoint of time-bounded grammars. RCB-grammars are context-free grammars of which the rules can be used in a productive and in a reductive fashion, while the application of these rules is controlled by a regular language. Several modes of derivation can be distinguished for this kind of grammar. A time-bound on such a grammar is a measure of its derivational complexity. For some families of time bounds and for some modes of derivation we establish closure properties and a normal form theorem. In addition parsing algorithms are given for some modes of derivation. We conclude with considering generalizations with respect to the family of control languages and the family of bounding functions

    FliPpr: A Prettier Invertible Printing System

    Get PDF
    When implementing a programming language, we often write a parser and a pretty-printer. However, manually writing both programs is not only tedious but also error-prone; it may happen that a pretty-printed result is not correctly parsed. In this paper, we propose FliPpr, which is a program transformation system that uses program inversion to produce a CFG parser from a pretty-printer. This novel approach has the advantages of fine-grained control over pretty-printing, and easy reuse of existing efficient pretty-printer and parser implementations

    Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary

    Full text link
    Cross-lingual model transfer is a compelling and popular method for predicting annotations in a low-resource language, whereby parallel corpora provide a bridge to a high-resource language and its associated annotated corpora. However, parallel data is not readily available for many languages, limiting the applicability of these approaches. We address these drawbacks in our framework which takes advantage of cross-lingual word embeddings trained solely on a high coverage bilingual dictionary. We propose a novel neural network model for joint training from both sources of data based on cross-lingual word embeddings, and show substantial empirical improvements over baseline techniques. We also propose several active learning heuristics, which result in improvements over competitive benchmark methods.Comment: 5 pages with 2 pages reference. Accepted to appear in ACL 201

    Parsing Thai Social Data: A New Challenge for Thai NLP

    Full text link
    Dependency parsing (DP) is a task that analyzes text for syntactic structure and relationship between words. DP is widely used to improve natural language processing (NLP) applications in many languages such as English. Previous works on DP are generally applicable to formally written languages. However, they do not apply to informal languages such as the ones used in social networks. Therefore, DP has to be researched and explored with such social network data. In this paper, we explore and identify a DP model that is suitable for Thai social network data. After that, we will identify the appropriate linguistic unit as an input. The result showed that, the transition based model called, improve Elkared dependency parser outperform the others at UAS of 81.42%.Comment: 7 Pages, 8 figures, to be published in The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2019

    Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

    Full text link
    A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations.Comment: Accepted at ICLR 201

    A non-projective greedy dependency parser with bidirectional LSTMs

    Full text link
    The LyS-FASTPARSE team presents BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kipperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some `suffixed' treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding `unsuffixed' treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSEComment: 12 pages, 2 figures, 5 table
    • …
    corecore