6 research outputs found

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    An Analog Decoder for Turbo-Structured Low-Density Parity-Check Codes

    Get PDF
    In this work, we consider a class of structured regular LDPC codes, called Turbo-Structured LDPC (TS-LDPC). TS-LDPC codes outperform random LDPC codes and have much lower error floor at high Signal-to-Noise Ratio (SNR). In this thesis, Min-Sum (MS) algorithms are adopted in the decoding of TS-LDPC codes due to their low complexity in the implementation. We show that the error performance of the MS-based TS-LDPC decoder is comparable with the Sum-Product (SP) based decoder and the error floor property of TS-LDPC codes is preserved. The TS-LDPC decoding algorithms can be performed by analog or digital circuitry. Analog decoders are preferred in many communication systems due to their potential for higher speed, lower power dissipation and smaller chip area compared to their digital counterparts. In this work, implementation of the (120, 75) MS-based TS-LDPC analog decoder is considered. The decoder chip consists of an analog decoder heart, digital input and digital output blocks. These digital blocks are required to deliver the received signal to the analog decoder heart and transfer the estimated codewords to the off-chip module. The analog decoder heart is an analog processor performing decoding on the Tanner graph of the code. Variable and check nodes are the main building blocks of analog decoder which are designed and evaluated. The check node is the most complicated unit in MS-based decoders. The minimizer circuit, the fundamental block of a check node, is designed to have a good trade-off between speed and accuracy. In addition, the structure of a high degree minimizer is proposed considering the accuracy, speed, power consumption and robustness against mismatch of the check node unit. The measurement results demonstrate that the error performance of the chip is comparable with theory. The SNR loss at Bit-Error-Rate of 10−5 is only 0.2dB compared to the theory while information throughput is 750Mb/s and the energy efficiency of the decoder chip is 17pJ/b. It is shown that the proposed decoder outperforms the analog decoders that have been fabricated to date in the sense of error performance, throughput and energy efficiency. This decoder is the first analog decoder that has ever been implemented in a sub 100-nm technology and it improves the throughput of analog decoders by a factor of 56. This decoder sets a new state-of-the-art in analog decoding

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Architecture and Analysis for Next Generation Mobile Signal Processing.

    Full text link
    Mobile devices have proliferated at a spectacular rate, with more than 3.3 billion active cell phones in the world. With sales totaling hundreds of billions every year, the mobile phone has arguably become the dominant computing platform, replacing the personal computer. Soon, improvements to today’s smart phones, such as high-bandwidth internet access, high-definition video processing, and human-centric interfaces that integrate voice recognition and video-conferencing will be commonplace. Cost effective and power efficient support for these applications will be required. Looking forward to the next generation of mobile computing, computation requirements will increase by one to three orders of magnitude due to higher data rates, increased complexity algorithms, and greater computation diversity but the power requirements will be just as stringent to ensure reasonable battery lifetimes. The design of the next generation of mobile platforms must address three critical challenges: efficiency, programmability, and adaptivity. The computational efficiency of existing solutions is inadequate and straightforward scaling by increasing the number of cores or the amount of data-level parallelism will not suffice. Programmability provides the opportunity for a single platform to support multiple applications and even multiple standards within each application domain. Programmability also provides: faster time to market as hardware and software development can proceed in parallel; the ability to fix bugs and add features after manufacturing; and, higher chip volumes as a single platform can support a family of mobile devices. Lastly, hardware adaptivity is necessary to maintain efficiency as the computational characteristics of the applications change. Current solutions are tailored specifically for wireless signal processing algorithms, but lose their efficiency when other application domains like high definition video are processed. This thesis addresses these challenges by presenting analysis of next generation mobile signal processing applications and proposing an advanced signal processing architecture to deal with the stringent requirements. An application-centric design approach is taken to design our architecture. First, a next generation wireless protocol and high definition video is analyzed and algorithmic characterizations discussed. From these characterizations, key architectural implications are presented, which form the basis for the advanced signal processor architecture, AnySP.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86344/1/mwoh_1.pd

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Error control in bacterial quorum communications

    Get PDF
    Quorum sensing (QS) is used to describe the communication between bacterial cells, whereby a coordinated population response is controlled through the synthesis, accumulation and subsequent sensing of specific diffusible chemical signals called autoinducers, enabling a cluster of bacteria to regulate gene expression and behavior collectively and synchronously, and assess their own population. As a promising method of molecular communication (MC), bacterial populations can be programmed as bio-transceivers to establish information transmission using molecules. In this work, to investigate the key features for MC, a bacterial QS system is introduced, which contains two clusters of bacteria, specifically Vibrio fischeri, as the transmitter node and receiver node, and the diffusive channel. The transmitted information is represented by the concentration of autoinducers with on-off keying (OOK) modulation. In addition, to achieve better reliability and energy efficiency, different error control techniques, including forward error correction (FEC) and Automatic Repeat reQuest (ARQ) are taken into consideration. For FEC, this work presents a comparison of the performance of traditional Hamming codes, Minimum Energy Codes (MEC) and Luby Transform (LT) codes over the channel. In addition, it applied several ARQ protocols, namely Stop-N-Wait (SW-ARQ), Go-Back-N (GBN-ARQ), and Selective-Repeat (SR-ARQ) combined with error detection codes to achieve better reliability. Results show that both the FEC and ARQ techniques can enhance the channel reliability, and that ARQ can resolve the issue of out-of-sequence and duplicate packet delivery. Moreover, this work further addresses the question of optimal frame size for data communication in this channel capacity and energy constrained bacterial quorum communication system. A novel energy model which is constructed using the experimental validated synthetic logic gates has been proposed to help with the optimization process. The optimal fixed frame length is determined for a set of channel parameters by maximizing the throughput and energy efficiency matrix
    corecore