34,138 research outputs found

    Bidirectional Learning for Robust Neural Networks

    Full text link
    A multilayer perceptron can behave as a generative classifier by applying bidirectional learning (BL). It consists of training an undirected neural network to map input to output and vice-versa; therefore it can produce a classifier in one direction, and a generator in the opposite direction for the same data. The learning process of BL tries to reproduce the neuroplasticity stated in Hebbian theory using only backward propagation of errors. In this paper, two novel learning techniques are introduced which use BL for improving robustness to white noise static and adversarial examples. The first method is bidirectional propagation of errors, which the error propagation occurs in backward and forward directions. Motivated by the fact that its generative model receives as input a constant vector per class, we introduce as a second method the hybrid adversarial networks (HAN). Its generative model receives a random vector as input and its training is based on generative adversarial networks (GAN). To assess the performance of BL, we perform experiments using several architectures with fully and convolutional layers, with and without bias. Experimental results show that both methods improve robustness to white noise static and adversarial examples, and even increase accuracy, but have different behavior depending on the architecture and task, being more beneficial to use the one or the other. Nevertheless, HAN using a convolutional architecture with batch normalization presents outstanding robustness, reaching state-of-the-art accuracy on adversarial examples of hand-written digits.Comment: 8 pages, 4 figures, submitted to 2019 International Joint Conference on Neural Network

    Bidirectional truncated recurrent neural networks for efficient speech denoising

    Get PDF
    We propose a bidirectional truncated recurrent neural network architecture for speech denoising. Recent work showed that deep recurrent neural networks perform well at speech denoising tasks and outperform feed forward architectures [1]. However, recurrent neural networks are difficult to train and their simulation does not allow for much parallelization. Given the increasing availability of parallel computing architectures like GPUs this is disadvantageous. The architecture we propose aims to retain the positive properties of recurrent neural networks and deep learning while remaining highly parallelizable. Unlike a standard recurrent neural network, it processes information from both past and future time steps. We evaluate two variants of this architecture on the Aurora2 task for robust ASR where they show promising results. The models outperform the ETSI2 advanced front end and the SPLICE algorithm under matching noise conditions.We propose a bidirectional truncated recurrent neural network architecture for speech denoising. Recent work showed that deep recurrent neural networks perform well at speech denoising tasks and outperform feed forward architectures [1]. However, recurrent neural networks are difficult to train and their simulation does not allow for much parallelization. Given the increasing availability of parallel computing architectures like GPUs this is disadvantageous. The architecture we propose aims to retain the positive properties of recurrent neural networks and deep learning while remaining highly parallelizable. Unlike a standard recurrent neural network, it processes information from both past and future time steps. We evaluate two variants of this architecture on the Aurora2 task for robust ASR where they show promising results. The models outperform the ETSI2 advanced front end and the SPLICE algorithm under matching noise conditions.P

    A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks

    Full text link
    Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Without segmentation, learning very long range context is difficult and becomes computationally intractable. Therefore, alternative soft decisions are needed at the pre-processing level. This paper proposes a hybrid text recognizer using a deep recurrent neural network with multiple layers of abstraction and long range context along with a language model to verify the performance of the deep neural network. In this paper we construct a multi-hypotheses tree architecture with candidate segments of line sequences from different segmentation algorithms at its different branches. The deep neural network is trained on perfectly segmented data and tests each of the candidate segments, generating unicode sequences. In the verification step, these unicode sequences are validated using a sub-string match with the language model and best first search is used to find the best possible combination of alternative hypothesis from the tree structure. Thus the verification framework using language models eliminates wrong segmentation outputs and filters recognition errors

    Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose {\sf Dipole}, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation
    corecore