2 research outputs found

    On Cooperative Multiple Access Channels with Delayed CSI at Transmitters

    Full text link
    We consider a cooperative two-user multiaccess channel in which the transmission is controlled by a random state. Both encoders transmit a common message and, one of the encoders also transmits an individual message. We study the capacity region of this communication model for different degrees of availability of the states at the encoders, causally or strictly causally. In the case in which the states are revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity region in the discrete memoryless case. In the case in which the states are revealed only strictly causally to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random variable. We then introduce a class of cooperative multiaccess channels with states known strictly causally at both encoders for which the inner and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels, the state can be obtained as a deterministic function of the channel inputs and output. We also study the model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder. Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these examples. The results shed more light on the utility of delayed channel state information for increasing the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in this framework.Comment: 54 pages. To appear in IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:1201.327

    STAR-RIS Assisted Full-Duplex Communication Networks

    Full text link
    Different from conventional reconfigurable intelligent surfaces (RIS), a recent innovation called simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has emerged, aimed at achieving complete 360-degree coverage in communication networks. Additionally, fullduplex (FD) technology is recognized as a potent approach for enhancing spectral efficiency by enabling simultaneous transmission and reception within the same time and frequency resources. In this study, we investigate the performance of a STAR-RIS-assisted FD communication system. The STAR-RIS is strategically placed at the cell-edge to facilitate communication for users located in this challenging region, while cell-center users can communicate directly with the FD base station (BS). We employ a non-orthogonal multiple access (NOMA) pairing scheme and account for system impairments, such as self-interference at the BS and imperfect successive interference cancellation (SIC). We derive closed-form expressions for the ergodic rates in both the up-link and down-link communications and extend our analysis to bidirectional communication between cell-center and cell-edge users. Furthermore, we formulate an optimization problem aimed at maximizing the ergodic sum-rate. This optimization involves adjusting the amplitudes and phase-shifts of the STAR-RIS elements and allocating total transmit power efficiently. To gain deeper insights into the achievable rates of STAR-RIS-aided FD systems, we explore the impact of various system parameters through numerical results
    corecore