29 research outputs found

    Post-Compromise Security in Self-Encryption

    Get PDF
    In self-encryption, a device encrypts some piece of information for itself to decrypt in the future. We are interested in security of self-encryption when the state occasionally leaks. Applications that use self-encryption include cloud storage, when a client encrypts files to be stored, and in 0-RTT session resumptions, when a server encrypts a resumption key to be kept by the client. Previous works focused on forward security and resistance to replay attacks. In our work, we study post-compromise security (PCS). PCS was achieved in ratcheted instant messaging schemes, at the price of having an inflating state size. An open question was whether state inflation was necessary. In our results, we prove that post-compromise security implies a super-linear state size in terms of the number of active ciphertexts which can still be decrypted. We apply our result to self-encryption for cloud storage, 0-RTT session resumption, and secure messaging. We further show how to construct a secure scheme matching our bound on the state size up to a constant factor

    Universally composable end-to-end secure messaging

    Full text link
    CNS-1718135 - National Science Foundation; CNS-1801564 - National Science Foundation; CNS-1931714 - National Science Foundation; CNS-1915763 - National Science Foundation; HR00112020021 - Department of Defense/DARPA; 000000000000000000000000000000000000000000000000000000037211 - SRI Internationalhttps://eprint.iacr.org/2022/376.pdfAccepted manuscrip

    On Secure Ratcheting with Immediate Decryption

    Get PDF

    Unique-Path Identity Based Encryption With Applications to Strongly Secure Messaging

    Get PDF
    Hierarchical Identity Based Encryption (HIBE) is a well studied, versatile tool used in many cryptographic protocols. Yet, since the performance of all known HIBE constructions is broadly considered prohibitive, some real-world applications avoid relying on HIBE at the expense of security. A prominent example for this is secure messaging: Strongly secure messaging protocols are provably equivalent to Key-Updatable Key Encapsulation Mechanisms (KU-KEMs; Balli et al., Asiacrypt 2020); so far, all KU-KEM constructions rely on adaptive unbounded-depth HIBE (Poettering and Rösler, Jaeger and Stepanovs, both CRYPTO 2018). By weakening security requirements for better efficiency, many messaging protocols dispense with using HIBE. In this work, we aim to gain better efficiency without sacrificing security. For this, we observe that applications like messaging only need a restricted variant of HIBE for strong security. This variant, that we call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE by requiring that each secret key can delegate at most one subordinate secret key. However, in contrast to fixed secret key delegation in Forward-Secure Public Key Encryption, the delegation in UPIBE, as in HIBE, is uniquely determined by variable identity strings from an exponentially large space. We investigate this mild but surprisingly effective restriction and show that it offers substantial complexity and performance advantages. More concretely, we generically build bounded-depth UPIBE from only bounded-collusion IBE in the standard model; and we generically build adaptive unbounded-depth UPIBE from only selective bounded-depth HIBE in the random oracle model. These results significantly extend the range of underlying assumptions and efficient instantiations. We conclude with a rigorous performance evaluation of our UPIBE design. Beyond solving challenging open problems by reducing complexity and improving efficiency of KU-KEM and strongly secure messaging protocols, we offer a new definitional perspective on the bounded-collusion setting

    Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group Key Agreement

    Get PDF
    While messaging systems with strong security guarantees are widely used in practice, designing a protocol that scales efficiently to large groups and enjoys similar security guarantees remains largely open. The two existing proposals to date are ART (Cohn-Gordon et al., CCS18) and TreeKEM (IETF, The Messaging Layer Security Protocol, draft). TreeKEM is the currently considered candidate by the IETF MLS working group, but dynamic group operations (i.e. adding and removing users) can cause efficiency issues. In this paper we formalize and analyze a variant of TreeKEM which we term Tainted TreeKEM (TTKEM for short). The basic idea underlying TTKEM was suggested by Millican (MLS mailing list, February 2018). This version is more efficient than TreeKEM for some natural distributions of group operations, we quantify this through simulations. Our second contribution is two security proofs for TTKEM which establish post compromise and forward secrecy even against adaptive attackers. If nn is the group size and QQ the number of operations, the security loss (to the underlying PKE) in the Random Oracle Model is a polynomial factor (Qn)2(Qn)^2, and in the Standard Model a quasipolynomial Qlog(n)Q^{\log(n)}. Our proofs can be adapted to TreeKEM as well. Before our work no security proof for any TreeKEM-like protocol establishing tight security against an adversary who can adaptively choose the sequence of operations was known. We also are the first to prove (or even formalize) active security where the server can arbitrarily deviate from the protocol specification. Proving fully active security - where also the users can arbitrarily deviate - remains open

    Secure Messaging with Strong Compromise Resilience, Temporal Privacy, and Immediate Decryption

    Get PDF
    Recent years have seen many advances in designing secure messaging protocols, aiming at provably strong security properties in theory or high efficiency for real-world practical deployment. However, important trade-off areas of the design space inbetween these elements have not yet been explored. In this work we design the first provably secure protocol that at the same time achieves (i) strong resilience against fine-grained compromise, (ii) temporal privacy, and (iii) immediate decryption with constant-size overhead, notably, in the post-quantum (PQ) setting. Besides these main design goals, we introduce a novel definition of offline deniability suitable for our setting, and prove that our protocol meets it, notably when combined with a PQ offline deniable initial key exchange

    Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations

    Get PDF
    The building blocks for secure messaging apps, such as Signal’s X3DH and Double Ratchet (DR) protocols, have received a lot of attention from the research community. They have notably been proved to meet strong security properties even in the case of compromise such as Forward Secrecy (FS) and Post-Compromise Security (PCS). However, there is a lack of formal study of these properties at the application level. Whereas the research works have studied such properties in the context of a single ratcheting chain, a conversation between two persons in a messaging application can in fact be the result of merging multiple ratcheting chains. In this work, we initiate the formal analysis of secure mes- saging taking the session-handling layer into account, and apply our approach to Sesame, Signal’s session management. We first experimentally show practical scenarios in which PCS can be violated in Signal by a clone attacker, despite its use of the Double Ratchet. We identify how this is enabled by Signal’s session-handling layer. We then design a formal model of the session-handling layer of Signal that is tractable for automated verification with the Tamarin prover, and use this model to rediscover the PCS violation and propose two provably secure mechanisms to offer stronger guarantees

    The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal Protocol

    Get PDF
    Signal is a famous secure messaging protocol used by billions of people, by virtue of many secure text messaging applications including Signal itself, WhatsApp, Facebook Messenger, Skype, and Google Allo. At its core it uses the concept of double ratcheting, where every message is encrypted and authenticated using a fresh symmetric key; it has many attractive properties, such as forward security, post-compromise security, and immediate (no-delay) decryption, which had never been achieved in combination by prior messaging protocols. While the formal analysis of the Signal protocol, and ratcheting in general, has attracted a lot of recent attention, we argue that none of the existing analyses is fully satisfactory. To address this problem, we give a clean and general definition of secure messaging, which clearly indicates the types of security we expect, including forward security, post-compromise security, and immediate decryption. We are the first to explicitly formalize and model the immediate decryption property, which implies (among other things) that parties seamlessly recover if a given message is permanently lost---a property not achieved by any of the recent provable alternatives to Signal. We build a modular generalized Signal protocol from the following components: (a) continuous key agreement (CKA), a clean primitive we introduce and which can be easily and generically built from public-key encryption (not just Diffie-Hellman as is done in the current Signal protocol) and roughly models public-key ratchets; (b) forward-secure authenticated encryption with associated data (FS-AEAD), which roughly captures symmetric-key ratchets; and (c) a two-input hash function that is a pseudorandom function (resp. generator with input) in its first (resp. second) input, which we term PRF-PRNG. As a result, in addition to instantiating our framework in a way resulting in the existing, widely-used Diffie-Hellman based Signal protocol, we can easily get post-quantum security and not rely on random oracles in the analysis. We further show that our design can be elegantly extended to include other forms of fine-grained state compromise recently studied at CRYPTO\u2718, but without sacrificing the immediate decryption property. However, we argue that the additional security offered by these modifications is unlikely to justify the efficiency hit of using much heavier public-key cryptography in place of symmetric-key cryptography

    Security Analysis and Improvements for the IETF MLS Standard for Group Messaging

    Get PDF
    Secure messaging (SM) protocols allow users to communicate securely over untrusted infrastructure. In contrast to most other secure communication protocols (such as TLS, SSH, or Wireguard), SM sessions may be long-lived (e.g., years) and highly asynchronous. In order to deal with likely state compromises of users during the lifetime of a session, SM protocols do not only protect authenticity and privacy, but they also guarantee forward secrecy (FS) and post-compromise security (PCS). The former ensures that messages sent and received before a state compromise remain secure, while the latter ensures that users can recover from state compromise as a consequence of normal protocol usage. SM has received considerable attention in the two-party case, where prior work has studied the well-known double-ratchet paradigm in particular and SM as a cryptographic primitive in general. Unfortunately, this paradigm does not scale well to the problem of secure group messaging (SGM). In order to address the lack of satisfactory SGM protocols, the IETF has launched the message-layer security (MLS) working group, which aims to standardize an eponymous SGM protocol. In this work we analyze the TreeKEM protocol, which is at the core of the SGM protocol proposed by the MLS working group. On a positive note, we show that TreeKEM achieves PCS in isolation (and slightly more). However, we observe that the current version of TreeKEM does not provide an adequate form of FS. More precisely, our work proceeds by formally capturing the exact security of TreeKEM as a so-called continuous group key agreement (CGKA) protocol, which we believe to be a primitive of independent interest. To address the insecurity of TreeKEM, we propose a simple modification to TreeKEM inspired by recent work of Jost et al. (EUROCRYPT \u2719) and an idea due to Kohbrok (MLS Mailing List). We then show that the modified version of TreeKEM comes with almost no efficiency degradation but achieves optimal (according to MLS specification) CGKA security, including FS and PCS. Our work also lays out how a CGKA protocol can be used to design a full SGM protocol. Finally, we propose and motivate an extensive list of potential future research directions for the area
    corecore