2,968 research outputs found

    On the Inefficiency of the Uniform Price Auction

    Full text link
    We present our results on Uniform Price Auctions, one of the standard sealed-bid multi-unit auction formats, for selling multiple identical units of a single good to multi-demand bidders. Contrary to the truthful and economically efficient multi-unit Vickrey auction, the Uniform Price Auction encourages strategic bidding and is socially inefficient in general. The uniform pricing rule is, however, widely popular by its appeal to the natural anticipation, that identical items should be identically priced. In this work we study equilibria of the Uniform Price Auction for bidders with (symmetric) submodular valuation functions, over the number of units that they win. We investigate pure Nash equilibria of the auction in undominated strategies; we produce a characterization of these equilibria that allows us to prove that a fraction 1-1/e of the optimum social welfare is always recovered in undominated pure Nash equilibrium -- and this bound is essentially tight. Subsequently, we study the auction under the incomplete information setting and prove a bound of 4-2/k on the economic inefficiency of (mixed) Bayes Nash equilibria that are supported by undominated strategies.Comment: Additions and Improvements upon SAGT 2012 results (and minor corrections on the previous version

    Composable and Efficient Mechanisms

    Full text link
    We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple different mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome in equilibrium both in the full information setting and in the Bayesian setting with uncertainty about participants, as well as in learning outcomes. Our main result is to show that such mechanisms compose well: smoothness locally at each mechanism implies efficiency globally. For mechanisms where good performance requires that bidders do not bid above their value, we identify the notion of a weakly smooth mechanism. Weakly smooth mechanisms, such as the Vickrey auction, are approximately efficient under the no-overbidding assumption. Similar to smooth mechanisms, weakly smooth mechanisms behave well in composition, and have high quality outcome in equilibrium (assuming no overbidding) both in the full information setting and in the Bayesian setting, as well as in learning outcomes. In most of the paper we assume participants have quasi-linear valuations. We also extend some of our results to settings where participants have budget constraints

    Tight Bounds for the Price of Anarchy of Simultaneous First Price Auctions

    Get PDF
    We study the Price of Anarchy of simultaneous first-price auctions for buyers with submodular and subadditive valuations. The current best upper bounds for the Bayesian Price of Anarchy of these auctions are e/(e-1) [Syrgkanis and Tardos 2013] and 2 [Feldman et al. 2013], respectively. We provide matching lower bounds for both cases even for the case of full information and for mixed Nash equilibria via an explicit construction. We present an alternative proof of the upper bound of e/(e-1) for first-price auctions with fractionally subadditive valuations which reveals the worst-case price distribution, that is used as a building block for the matching lower bound construction. We generalize our results to a general class of item bidding auctions that we call bid-dependent auctions (including first-price auctions and all-pay auctions) where the winner is always the highest bidder and each bidder's payment depends only on his own bid. Finally, we apply our techniques to discriminatory price multi-unit auctions. We complement the results of [de Keijzer et al. 2013] for the case of subadditive valuations, by providing a matching lower bound of 2. For the case of submodular valuations, we provide a lower bound of 1.109. For the same class of valuations, we were able to reproduce the upper bound of e/(e-1) using our non-smooth approach.Comment: 37 pages, 5 figures, ACM Transactions on Economics and Computatio

    Smoothness for Simultaneous Composition of Mechanisms with Admission

    Full text link
    We study social welfare of learning outcomes in mechanisms with admission. In our repeated game there are nn bidders and mm mechanisms, and in each round each mechanism is available for each bidder only with a certain probability. Our scenario is an elementary case of simple mechanism design with incomplete information, where availabilities are bidder types. It captures natural applications in online markets with limited supply and can be used to model access of unreliable channels in wireless networks. If mechanisms satisfy a smoothness guarantee, existing results show that learning outcomes recover a significant fraction of the optimal social welfare. These approaches, however, have serious drawbacks in terms of plausibility and computational complexity. Also, the guarantees apply only when availabilities are stochastically independent among bidders. In contrast, we propose an alternative approach where each bidder uses a single no-regret learning algorithm and applies it in all rounds. This results in what we call availability-oblivious coarse correlated equilibria. It exponentially decreases the learning burden, simplifies implementation (e.g., as a method for channel access in wireless devices), and thereby addresses some of the concerns about Bayes-Nash equilibria and learning outcomes in Bayesian settings. Our main results are general composition theorems for smooth mechanisms when valuation functions of bidders are lattice-submodular. They rely on an interesting connection to the notion of correlation gap of submodular functions over product lattices.Comment: Full version of WINE 2016 pape

    Collusion via signaling in open ascending auctions with multiple objects and complementarities

    Get PDF
    Collusive equilibria exist in open ascending auctions with multiple objects, if the number of bidders is sufficiently small relative to the number of objects, even with large complementarities in the buyers' utility functions. The bidders collude by dividing the objects among themselves, while keeping the prices low. Hence the complementarities are not realized
    • …
    corecore